gpu加速的voldb:索引嵌套循环连接的一个案例

A. Nguyen, M. Edahiro, S. Kato
{"title":"gpu加速的voldb:索引嵌套循环连接的一个案例","authors":"A. Nguyen, M. Edahiro, S. Kato","doi":"10.1109/HPCS.2018.00046","DOIUrl":null,"url":null,"abstract":"Graphics Processing Units (GPUs) are traditionally designed for gaming purposes. The new GPU hardware and new programming platforms for GPU applications have enabled GPUs to work as co-processors alongside Central Processing Units (CPUs) in order to speed up general purpose applications. In this paper, we focus on the design and implementation of the GPU-Accelerated indexed nested loop join (INLJ) for in-memory relational database management system (RDBMS). Previous studies have proposed novel approaches for using GPU to improve the performance of the relational INLJ, but they are only implemented on simulation systems. Their performance in current industry RDBMS still needs to be clarified. To this end, we implement the GPU-Accelerated INLJ algorithm and perform various experiments on that join in VoltDB, an inmemory commercial RDBMS. We also propose a method for handling skewed input data, which is a critical problem in the GPU INLJ. Our evaluations indicated that though the GPU-Accelerated INLJ is 2-14X faster than the default INLJ of VoltDB, the memory copy between the host and the GPU memory is the major factor that holds back the join's speedup rate.","PeriodicalId":308138,"journal":{"name":"2018 International Conference on High Performance Computing & Simulation (HPCS)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GPU-Accelerated VoltDB: A Case for Indexed Nested Loop Join\",\"authors\":\"A. Nguyen, M. Edahiro, S. Kato\",\"doi\":\"10.1109/HPCS.2018.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics Processing Units (GPUs) are traditionally designed for gaming purposes. The new GPU hardware and new programming platforms for GPU applications have enabled GPUs to work as co-processors alongside Central Processing Units (CPUs) in order to speed up general purpose applications. In this paper, we focus on the design and implementation of the GPU-Accelerated indexed nested loop join (INLJ) for in-memory relational database management system (RDBMS). Previous studies have proposed novel approaches for using GPU to improve the performance of the relational INLJ, but they are only implemented on simulation systems. Their performance in current industry RDBMS still needs to be clarified. To this end, we implement the GPU-Accelerated INLJ algorithm and perform various experiments on that join in VoltDB, an inmemory commercial RDBMS. We also propose a method for handling skewed input data, which is a critical problem in the GPU INLJ. Our evaluations indicated that though the GPU-Accelerated INLJ is 2-14X faster than the default INLJ of VoltDB, the memory copy between the host and the GPU memory is the major factor that holds back the join's speedup rate.\",\"PeriodicalId\":308138,\"journal\":{\"name\":\"2018 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS.2018.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2018.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

图形处理单元(gpu)传统上是为游戏目的而设计的。新的GPU硬件和GPU应用程序的新编程平台使GPU能够与中央处理器(cpu)一起作为协处理器工作,以加快通用应用程序的速度。本文重点研究了面向内存关系数据库管理系统(RDBMS)的gpu加速索引嵌套循环连接(INLJ)的设计与实现。以前的研究已经提出了利用GPU来提高关系INLJ性能的新方法,但它们只在仿真系统上实现。它们在当前工业RDBMS中的表现仍有待澄清。为此,我们实现了gpu加速的INLJ算法,并在voldb(一个内存中的商业RDBMS)中对该算法进行了各种实验。我们还提出了一种处理倾斜输入数据的方法,这是GPU INLJ中的一个关键问题。我们的评估表明,虽然GPU加速的INLJ比voldb的默认INLJ快2-14倍,但主机和GPU内存之间的内存复制是阻碍连接加速速度的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-Accelerated VoltDB: A Case for Indexed Nested Loop Join
Graphics Processing Units (GPUs) are traditionally designed for gaming purposes. The new GPU hardware and new programming platforms for GPU applications have enabled GPUs to work as co-processors alongside Central Processing Units (CPUs) in order to speed up general purpose applications. In this paper, we focus on the design and implementation of the GPU-Accelerated indexed nested loop join (INLJ) for in-memory relational database management system (RDBMS). Previous studies have proposed novel approaches for using GPU to improve the performance of the relational INLJ, but they are only implemented on simulation systems. Their performance in current industry RDBMS still needs to be clarified. To this end, we implement the GPU-Accelerated INLJ algorithm and perform various experiments on that join in VoltDB, an inmemory commercial RDBMS. We also propose a method for handling skewed input data, which is a critical problem in the GPU INLJ. Our evaluations indicated that though the GPU-Accelerated INLJ is 2-14X faster than the default INLJ of VoltDB, the memory copy between the host and the GPU memory is the major factor that holds back the join's speedup rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信