基于深度强化学习的变道决策基准

Junjie Wang, Qichao Zhang, Dongbin Zhao
{"title":"基于深度强化学习的变道决策基准","authors":"Junjie Wang, Qichao Zhang, Dongbin Zhao","doi":"10.1145/3505688.3505693","DOIUrl":null,"url":null,"abstract":"The development of autonomous driving has attracted extensive attention in recent years, and it is essential to evaluate the performance of autonomous driving. However, testing on the road is expensive and inefficient. Virtual testing is the primary way to validate and verify self-driving cars, and the basis of virtual testing is to build simulation scenarios. In this paper, we propose a training, testing, and evaluation pipeline for the lane-changing task from the perspective of deep reinforcement learning. First, we design lane change scenarios for training and testing, where the test scenarios include stochastic and deterministic parts. Then, we deploy a set of benchmarks consisting of learning and non-learning approaches. We train several state-of-the-art deep reinforcement learning methods in the designed training scenarios and provide the benchmark metrics evaluation results of the trained models in the test scenarios. The designed lane-changing scenarios and benchmarks are both opened to provide a consistent experimental environment for the lane-changing task1 .","PeriodicalId":375528,"journal":{"name":"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking Lane-changing Decision-making for Deep Reinforcement Learning\",\"authors\":\"Junjie Wang, Qichao Zhang, Dongbin Zhao\",\"doi\":\"10.1145/3505688.3505693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of autonomous driving has attracted extensive attention in recent years, and it is essential to evaluate the performance of autonomous driving. However, testing on the road is expensive and inefficient. Virtual testing is the primary way to validate and verify self-driving cars, and the basis of virtual testing is to build simulation scenarios. In this paper, we propose a training, testing, and evaluation pipeline for the lane-changing task from the perspective of deep reinforcement learning. First, we design lane change scenarios for training and testing, where the test scenarios include stochastic and deterministic parts. Then, we deploy a set of benchmarks consisting of learning and non-learning approaches. We train several state-of-the-art deep reinforcement learning methods in the designed training scenarios and provide the benchmark metrics evaluation results of the trained models in the test scenarios. The designed lane-changing scenarios and benchmarks are both opened to provide a consistent experimental environment for the lane-changing task1 .\",\"PeriodicalId\":375528,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3505688.3505693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3505688.3505693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,自动驾驶的发展引起了广泛的关注,对自动驾驶性能进行评估是十分必要的。然而,在道路上进行测试既昂贵又低效。虚拟测试是对自动驾驶汽车进行验证和验证的主要方式,虚拟测试的基础是构建仿真场景。在本文中,我们从深度强化学习的角度为变道任务提出了一个训练、测试和评估管道。首先,我们设计了用于训练和测试的变道场景,其中测试场景包括随机和确定性部分。然后,我们部署了一组由学习和非学习方法组成的基准。我们在设计的训练场景中训练了几种最先进的深度强化学习方法,并在测试场景中提供了训练模型的基准度量评估结果。设计的变道场景和基准都是开放的,为变道任务提供了一致的实验环境1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking Lane-changing Decision-making for Deep Reinforcement Learning
The development of autonomous driving has attracted extensive attention in recent years, and it is essential to evaluate the performance of autonomous driving. However, testing on the road is expensive and inefficient. Virtual testing is the primary way to validate and verify self-driving cars, and the basis of virtual testing is to build simulation scenarios. In this paper, we propose a training, testing, and evaluation pipeline for the lane-changing task from the perspective of deep reinforcement learning. First, we design lane change scenarios for training and testing, where the test scenarios include stochastic and deterministic parts. Then, we deploy a set of benchmarks consisting of learning and non-learning approaches. We train several state-of-the-art deep reinforcement learning methods in the designed training scenarios and provide the benchmark metrics evaluation results of the trained models in the test scenarios. The designed lane-changing scenarios and benchmarks are both opened to provide a consistent experimental environment for the lane-changing task1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信