M. Molnar, G. Donnarumma, V. Palankovski, J. Kuzmík, D. Donoval, J. Kováč, S. Selberherr
{"title":"In0.12Al0.88N/GaN hemt的电热分析","authors":"M. Molnar, G. Donnarumma, V. Palankovski, J. Kuzmík, D. Donoval, J. Kováč, S. Selberherr","doi":"10.1109/ASDAM.2012.6418556","DOIUrl":null,"url":null,"abstract":"InAlN/GaN High Electron Mobility Transistors (HEMTs) are very popular because of their promising electrical and thermal properties. With the innovation of these structures and the development of fabrication processes, there are still many serious issues like current collapse or self-heating effects, which must be addressed. In this work, the DC device behavior is studied both experimentally and by means of two-dimensional hydrodynamic device simulations. Very good agreement between measurements and simulations with Minimos-NT is achieved using the hydrodynamic transport model including self-heating and impact ionization effects.","PeriodicalId":426709,"journal":{"name":"The Ninth International Conference on Advanced Semiconductor Devices and Mircosystems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrothermal analysis of In0.12Al0.88N/GaN HEMTs\",\"authors\":\"M. Molnar, G. Donnarumma, V. Palankovski, J. Kuzmík, D. Donoval, J. Kováč, S. Selberherr\",\"doi\":\"10.1109/ASDAM.2012.6418556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"InAlN/GaN High Electron Mobility Transistors (HEMTs) are very popular because of their promising electrical and thermal properties. With the innovation of these structures and the development of fabrication processes, there are still many serious issues like current collapse or self-heating effects, which must be addressed. In this work, the DC device behavior is studied both experimentally and by means of two-dimensional hydrodynamic device simulations. Very good agreement between measurements and simulations with Minimos-NT is achieved using the hydrodynamic transport model including self-heating and impact ionization effects.\",\"PeriodicalId\":426709,\"journal\":{\"name\":\"The Ninth International Conference on Advanced Semiconductor Devices and Mircosystems\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ninth International Conference on Advanced Semiconductor Devices and Mircosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASDAM.2012.6418556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Conference on Advanced Semiconductor Devices and Mircosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASDAM.2012.6418556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrothermal analysis of In0.12Al0.88N/GaN HEMTs
InAlN/GaN High Electron Mobility Transistors (HEMTs) are very popular because of their promising electrical and thermal properties. With the innovation of these structures and the development of fabrication processes, there are still many serious issues like current collapse or self-heating effects, which must be addressed. In this work, the DC device behavior is studied both experimentally and by means of two-dimensional hydrodynamic device simulations. Very good agreement between measurements and simulations with Minimos-NT is achieved using the hydrodynamic transport model including self-heating and impact ionization effects.