在基于sram的fpga中设计容错系统

F. Lima, L. Carro, R. Reis
{"title":"在基于sram的fpga中设计容错系统","authors":"F. Lima, L. Carro, R. Reis","doi":"10.1145/775832.775997","DOIUrl":null,"url":null,"abstract":"This paper discusses high level techniques for designing fault tolerant systems in SRAM-based FPGAs, without modification in the FPGA architecture. Triple Modular Redundancy (TMR) has been successfully applied in FPGAs to mitigate transient faults, which are likely to occur in space applications. However, TMR comes with high area and power dissipation penalties. The new technique proposed in this paper was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. We present some fault coverage results and a comparison with the TMR approach.","PeriodicalId":167477,"journal":{"name":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":"{\"title\":\"Designing fault tolerant systems into SRAM-based FPGAs\",\"authors\":\"F. Lima, L. Carro, R. Reis\",\"doi\":\"10.1145/775832.775997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses high level techniques for designing fault tolerant systems in SRAM-based FPGAs, without modification in the FPGA architecture. Triple Modular Redundancy (TMR) has been successfully applied in FPGAs to mitigate transient faults, which are likely to occur in space applications. However, TMR comes with high area and power dissipation penalties. The new technique proposed in this paper was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. We present some fault coverage results and a comparison with the TMR approach.\",\"PeriodicalId\":167477,\"journal\":{\"name\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"152\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/775832.775997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/775832.775997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

摘要

本文讨论了在不修改FPGA结构的情况下,在基于sram的FPGA中设计容错系统的高级技术。三模冗余(TMR)已成功应用于fpga中,以减轻在空间应用中可能发生的瞬态故障。然而,TMR带来了高面积和高功耗的代价。本文提出的新技术是专门为fpga处理用户组合逻辑和顺序逻辑中的暂态故障而开发的,同时还能减少引脚数、面积和功耗。仿真板上的故障注入实验验证了该方法的有效性。我们给出了一些故障覆盖的结果,并与TMR方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing fault tolerant systems into SRAM-based FPGAs
This paper discusses high level techniques for designing fault tolerant systems in SRAM-based FPGAs, without modification in the FPGA architecture. Triple Modular Redundancy (TMR) has been successfully applied in FPGAs to mitigate transient faults, which are likely to occur in space applications. However, TMR comes with high area and power dissipation penalties. The new technique proposed in this paper was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. We present some fault coverage results and a comparison with the TMR approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信