格结构及其对有序模糊数的启示

M. Kacprzak, W. Kosinski
{"title":"格结构及其对有序模糊数的启示","authors":"M. Kacprzak, W. Kosinski","doi":"10.2991/eusflat.2011.156","DOIUrl":null,"url":null,"abstract":"Ordered fuzzy numbers (OFN) invented by the second author and his two coworkers in 2002 make possible to utilize the fuzzy arithmetic and to construct the Abelian group of fuzzy numbers and then an ordered ring. The definition of OFN uses the extension of the parametric representation of convex fuzzy numbers. Fuzzy implication is proposed with the help of algebraic operations and a lattice structure defined on OFN.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On lattice structure and implications on ordered fuzzy numbers\",\"authors\":\"M. Kacprzak, W. Kosinski\",\"doi\":\"10.2991/eusflat.2011.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordered fuzzy numbers (OFN) invented by the second author and his two coworkers in 2002 make possible to utilize the fuzzy arithmetic and to construct the Abelian group of fuzzy numbers and then an ordered ring. The definition of OFN uses the extension of the parametric representation of convex fuzzy numbers. Fuzzy implication is proposed with the help of algebraic operations and a lattice structure defined on OFN.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

第二作者和他的两位同事在2002年发明的有序模糊数(OFN)使得利用模糊算法构造模糊数的阿贝尔群进而构造有序环成为可能。OFN的定义采用凸模糊数的参数表示的推广。利用代数运算和在OFN上定义的格结构,提出了模糊蕴涵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On lattice structure and implications on ordered fuzzy numbers
Ordered fuzzy numbers (OFN) invented by the second author and his two coworkers in 2002 make possible to utilize the fuzzy arithmetic and to construct the Abelian group of fuzzy numbers and then an ordered ring. The definition of OFN uses the extension of the parametric representation of convex fuzzy numbers. Fuzzy implication is proposed with the help of algebraic operations and a lattice structure defined on OFN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信