新型噻唑衍生物的合成、生物活性评价及分子对接研究

Derya Osmaniye, Uğur Kayış, Ü. Gül, Y. Özkay, Z. Kaplancıklı
{"title":"新型噻唑衍生物的合成、生物活性评价及分子对接研究","authors":"Derya Osmaniye, Uğur Kayış, Ü. Gül, Y. Özkay, Z. Kaplancıklı","doi":"10.55971/ejls.1270394","DOIUrl":null,"url":null,"abstract":"Resistance to existing drugs develops because of insensible use of antibacterial and antifungal drugs. Therefore, there is a need for the development of new drug candidate compounds. The thiazole ring has many biological activities. It is possible to include antibacterial and antifungal activities among these activities. In addition to these, the thiazole ring has been preferred because it is the bioisostere of the imidazole ring in the structure of many antifungal drugs. For this purpose, within the scope of this study, 7 new thiazole compounds were synthesized, and their structure determinations were carried out using HRMS, 1H-NMR, 13C-NMR spectroscopic methods. Their antibacterial and antifungal activities were investigated by in vitro methods. As a result of activity tests, compound 3e showed activity against C.krusei strain with MIC50=31.25 ug/mL. The potential effectiveness of the compound 3e on the 14alpha-demethylase enzyme (PDB ID:3LD6) was tested by in silico studies.","PeriodicalId":176179,"journal":{"name":"European Journal of Life Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis, biological activity evaluation and molecular docking studies of novel thiazole derivatives\",\"authors\":\"Derya Osmaniye, Uğur Kayış, Ü. Gül, Y. Özkay, Z. Kaplancıklı\",\"doi\":\"10.55971/ejls.1270394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistance to existing drugs develops because of insensible use of antibacterial and antifungal drugs. Therefore, there is a need for the development of new drug candidate compounds. The thiazole ring has many biological activities. It is possible to include antibacterial and antifungal activities among these activities. In addition to these, the thiazole ring has been preferred because it is the bioisostere of the imidazole ring in the structure of many antifungal drugs. For this purpose, within the scope of this study, 7 new thiazole compounds were synthesized, and their structure determinations were carried out using HRMS, 1H-NMR, 13C-NMR spectroscopic methods. Their antibacterial and antifungal activities were investigated by in vitro methods. As a result of activity tests, compound 3e showed activity against C.krusei strain with MIC50=31.25 ug/mL. The potential effectiveness of the compound 3e on the 14alpha-demethylase enzyme (PDB ID:3LD6) was tested by in silico studies.\",\"PeriodicalId\":176179,\"journal\":{\"name\":\"European Journal of Life Sciences\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Life Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55971/ejls.1270394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55971/ejls.1270394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于不明智地使用抗菌和抗真菌药物,对现有药物产生耐药性。因此,有必要开发新的候选药物化合物。噻唑环具有许多生物活性。在这些活性中可能包括抗菌和抗真菌活性。除此之外,噻唑环一直是首选的,因为在许多抗真菌药物的结构中,它是咪唑环的生物同分异构体。为此,在本研究范围内,合成了7个新的噻唑类化合物,并利用HRMS、1H-NMR、13C-NMR等波谱方法对其结构进行了测定。采用体外抑菌法研究其抑菌活性。活性试验表明,化合物3e对克氏弧菌的抑菌活性最高,MIC50=31.25 ug/mL。化合物3e对14 α -去甲基化酶(PDB ID:3LD6)的潜在有效性通过硅实验进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, biological activity evaluation and molecular docking studies of novel thiazole derivatives
Resistance to existing drugs develops because of insensible use of antibacterial and antifungal drugs. Therefore, there is a need for the development of new drug candidate compounds. The thiazole ring has many biological activities. It is possible to include antibacterial and antifungal activities among these activities. In addition to these, the thiazole ring has been preferred because it is the bioisostere of the imidazole ring in the structure of many antifungal drugs. For this purpose, within the scope of this study, 7 new thiazole compounds were synthesized, and their structure determinations were carried out using HRMS, 1H-NMR, 13C-NMR spectroscopic methods. Their antibacterial and antifungal activities were investigated by in vitro methods. As a result of activity tests, compound 3e showed activity against C.krusei strain with MIC50=31.25 ug/mL. The potential effectiveness of the compound 3e on the 14alpha-demethylase enzyme (PDB ID:3LD6) was tested by in silico studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信