基于LDA的运动信息视频监控序列分类

A. Diop, S. Meza, M. Gordan, A. Vlaicu
{"title":"基于LDA的运动信息视频监控序列分类","authors":"A. Diop, S. Meza, M. Gordan, A. Vlaicu","doi":"10.23919/ICACT.2018.8323807","DOIUrl":null,"url":null,"abstract":"Video surveillance is one of the key components in todays' public security. The possibility to identify abnormal events in such sequences is a difficult problem in computer vision with the aim of providing automatic means of analysis. The use of Latent Dirichlet Allocation (LDA) provided encouraging results for topic classification in text documents and extensions to the video range have already been presented in the literature. The paper approaches video sequence classification considering the extension of the LDA model by building a vocabulary based on motion information “words” that are used to isolate events/topics present in the video. The implementation is tested on the PETS datasets and results are compared with state of the art.","PeriodicalId":228625,"journal":{"name":"2018 20th International Conference on Advanced Communication Technology (ICACT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"LDA based classification of video surveillance sequences using motion information\",\"authors\":\"A. Diop, S. Meza, M. Gordan, A. Vlaicu\",\"doi\":\"10.23919/ICACT.2018.8323807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video surveillance is one of the key components in todays' public security. The possibility to identify abnormal events in such sequences is a difficult problem in computer vision with the aim of providing automatic means of analysis. The use of Latent Dirichlet Allocation (LDA) provided encouraging results for topic classification in text documents and extensions to the video range have already been presented in the literature. The paper approaches video sequence classification considering the extension of the LDA model by building a vocabulary based on motion information “words” that are used to isolate events/topics present in the video. The implementation is tested on the PETS datasets and results are compared with state of the art.\",\"PeriodicalId\":228625,\"journal\":{\"name\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT.2018.8323807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2018.8323807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

视频监控是当今公共安全的关键组成部分之一。如何在这些序列中识别异常事件是计算机视觉中的一个难题,其目的是提供自动分析手段。潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)的使用为文本文档的主题分类提供了令人鼓舞的结果,并且视频范围的扩展已经在文献中提出。本文通过构建一个基于运动信息“词”的词汇表来隔离视频中出现的事件/主题,从而考虑到LDA模型的扩展来处理视频序列分类。在pet数据集上对实现进行了测试,并将结果与最先进的技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LDA based classification of video surveillance sequences using motion information
Video surveillance is one of the key components in todays' public security. The possibility to identify abnormal events in such sequences is a difficult problem in computer vision with the aim of providing automatic means of analysis. The use of Latent Dirichlet Allocation (LDA) provided encouraging results for topic classification in text documents and extensions to the video range have already been presented in the literature. The paper approaches video sequence classification considering the extension of the LDA model by building a vocabulary based on motion information “words” that are used to isolate events/topics present in the video. The implementation is tested on the PETS datasets and results are compared with state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信