OntoExtract -使用多个本体自动提取记录

Jer Lang Hong
{"title":"OntoExtract -使用多个本体自动提取记录","authors":"Jer Lang Hong","doi":"10.1109/FSKD.2013.6816318","DOIUrl":null,"url":null,"abstract":"Current search engines require an accurate yet fast automated extractor to extract relevant information from deep web for the users. Human users usually enter search queries and the search engines will then locate the desire information of interest by disambiguate the search query accordingly. The queries will then be passed on to multiple search engines for further processing. These search engines will then return the search results to the main search engine. However, data returned from these search engines are usually varied and presented in numerous formats and layouts. To extract them, we need automated extractor to filter out irrelevant information and locate the correct information. Current trends focused on using ontologies to automatically extract this information with high accuracy. To the best of our knowledge, no works have been made on using multiple ontologies (using many ontology techniques) to automatically extract information from deep webs. In this paper, we demonstrate that multiple ontologies technique can achieve higher accuracy when extracting data from the deep web.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"OntoExtract - Automated extraction of records using multiple ontologies\",\"authors\":\"Jer Lang Hong\",\"doi\":\"10.1109/FSKD.2013.6816318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current search engines require an accurate yet fast automated extractor to extract relevant information from deep web for the users. Human users usually enter search queries and the search engines will then locate the desire information of interest by disambiguate the search query accordingly. The queries will then be passed on to multiple search engines for further processing. These search engines will then return the search results to the main search engine. However, data returned from these search engines are usually varied and presented in numerous formats and layouts. To extract them, we need automated extractor to filter out irrelevant information and locate the correct information. Current trends focused on using ontologies to automatically extract this information with high accuracy. To the best of our knowledge, no works have been made on using multiple ontologies (using many ontology techniques) to automatically extract information from deep webs. In this paper, we demonstrate that multiple ontologies technique can achieve higher accuracy when extracting data from the deep web.\",\"PeriodicalId\":368964,\"journal\":{\"name\":\"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2013.6816318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当前的搜索引擎需要一个准确而快速的自动提取器从深网中为用户提取相关信息。人类用户通常输入搜索查询,然后搜索引擎将通过相应地消除搜索查询的歧义来定位感兴趣的愿望信息。然后,查询将被传递给多个搜索引擎进行进一步处理。这些搜索引擎然后将搜索结果返回给主搜索引擎。然而,从这些搜索引擎返回的数据通常是多种多样的,并以多种格式和布局呈现。为了提取它们,我们需要自动提取器来过滤掉不相关的信息,定位出正确的信息。目前的趋势集中在使用本体来高精度地自动提取这些信息。据我们所知,目前还没有关于使用多个本体(使用多种本体技术)从深度网络中自动提取信息的研究。在本文中,我们证明了多本体技术在从深度网络中提取数据时可以达到更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OntoExtract - Automated extraction of records using multiple ontologies
Current search engines require an accurate yet fast automated extractor to extract relevant information from deep web for the users. Human users usually enter search queries and the search engines will then locate the desire information of interest by disambiguate the search query accordingly. The queries will then be passed on to multiple search engines for further processing. These search engines will then return the search results to the main search engine. However, data returned from these search engines are usually varied and presented in numerous formats and layouts. To extract them, we need automated extractor to filter out irrelevant information and locate the correct information. Current trends focused on using ontologies to automatically extract this information with high accuracy. To the best of our knowledge, no works have been made on using multiple ontologies (using many ontology techniques) to automatically extract information from deep webs. In this paper, we demonstrate that multiple ontologies technique can achieve higher accuracy when extracting data from the deep web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信