{"title":"硅纳米线场效应管中非故意单电荷效应的原子模型","authors":"Ramya Hindupur, S. Islam, S. Ahmed","doi":"10.1109/NMDC.2010.5652451","DOIUrl":null,"url":null,"abstract":"Numerical simulations have been performed to study single-charge-induced ON-current fluctuations (random telegraphic noise) in silicon nanowire field-effect transistors. A 3-D fully atomistic quantum-corrected particle-based Monte Carlo device simulator (MCDS 3-D) has been integrated and used in this work. Our study confirms that the presence of single channel charges modifies the electrostatics (carrier density) and dynamics (carrier mobility) of the device, both of which play important roles in determining the magnitude of the current fluctuations. The relative impact (percentage change in the ON-current) depends on an intricate interplay of device size, geometry, channel (crystal) orientation, gate bias, and energetics and spatial location of the charge.","PeriodicalId":423557,"journal":{"name":"2010 IEEE Nanotechnology Materials and Devices Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic modeling of unintentional single charge effects in silicon nanowire FETs\",\"authors\":\"Ramya Hindupur, S. Islam, S. Ahmed\",\"doi\":\"10.1109/NMDC.2010.5652451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulations have been performed to study single-charge-induced ON-current fluctuations (random telegraphic noise) in silicon nanowire field-effect transistors. A 3-D fully atomistic quantum-corrected particle-based Monte Carlo device simulator (MCDS 3-D) has been integrated and used in this work. Our study confirms that the presence of single channel charges modifies the electrostatics (carrier density) and dynamics (carrier mobility) of the device, both of which play important roles in determining the magnitude of the current fluctuations. The relative impact (percentage change in the ON-current) depends on an intricate interplay of device size, geometry, channel (crystal) orientation, gate bias, and energetics and spatial location of the charge.\",\"PeriodicalId\":423557,\"journal\":{\"name\":\"2010 IEEE Nanotechnology Materials and Devices Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Nanotechnology Materials and Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC.2010.5652451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Nanotechnology Materials and Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2010.5652451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atomistic modeling of unintentional single charge effects in silicon nanowire FETs
Numerical simulations have been performed to study single-charge-induced ON-current fluctuations (random telegraphic noise) in silicon nanowire field-effect transistors. A 3-D fully atomistic quantum-corrected particle-based Monte Carlo device simulator (MCDS 3-D) has been integrated and used in this work. Our study confirms that the presence of single channel charges modifies the electrostatics (carrier density) and dynamics (carrier mobility) of the device, both of which play important roles in determining the magnitude of the current fluctuations. The relative impact (percentage change in the ON-current) depends on an intricate interplay of device size, geometry, channel (crystal) orientation, gate bias, and energetics and spatial location of the charge.