带有压电片的悬臂梁振动优化控制

H. Mohammadi, S. M. Haris
{"title":"带有压电片的悬臂梁振动优化控制","authors":"H. Mohammadi, S. M. Haris","doi":"10.1109/ICMIC.2014.7020733","DOIUrl":null,"url":null,"abstract":"In this work, the equation of motion of a cantilever beam with two piezoelectric patches, one acting as a sensor and the other as an actuator was first formulated, and the sensor induced voltage, representing the strain in the beam, was calculated. The beam governing equation was converted into a state space model and its response under active vibration control was studied through numerical simulations. Two types of control methods were used, velocity feedback control (VFC) and the Linear Quadratic Regulator (LQR). The effects of varying controller gains and weighting matrices on the beam vibration amplitude and settling time, as well as the induced voltage in the actuator were investigated. The LQR controller was found to be more effective than the VFC as the maximum induced actuator voltage was significantly lower. For the LQR controller weighting matrices Q and R, it was found that increasing Q reduces settling time and increases the actuator induced voltage, while increasing R, increases settling time. A calculation method for optimizing sensor placement and actuator length is also presented. The results indicate that the optimal actuator length is about 60% of the beam length.","PeriodicalId":405363,"journal":{"name":"Proceedings of 2014 International Conference on Modelling, Identification & Control","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing vibration control in a cantilever beam with piezoelectric patches\",\"authors\":\"H. Mohammadi, S. M. Haris\",\"doi\":\"10.1109/ICMIC.2014.7020733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the equation of motion of a cantilever beam with two piezoelectric patches, one acting as a sensor and the other as an actuator was first formulated, and the sensor induced voltage, representing the strain in the beam, was calculated. The beam governing equation was converted into a state space model and its response under active vibration control was studied through numerical simulations. Two types of control methods were used, velocity feedback control (VFC) and the Linear Quadratic Regulator (LQR). The effects of varying controller gains and weighting matrices on the beam vibration amplitude and settling time, as well as the induced voltage in the actuator were investigated. The LQR controller was found to be more effective than the VFC as the maximum induced actuator voltage was significantly lower. For the LQR controller weighting matrices Q and R, it was found that increasing Q reduces settling time and increases the actuator induced voltage, while increasing R, increases settling time. A calculation method for optimizing sensor placement and actuator length is also presented. The results indicate that the optimal actuator length is about 60% of the beam length.\",\"PeriodicalId\":405363,\"journal\":{\"name\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2014.7020733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Modelling, Identification & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2014.7020733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,首先建立了具有两个压电片的悬臂梁的运动方程,一个作为传感器,另一个作为执行器,并计算了传感器感应电压,代表梁中的应变。将梁的控制方程转化为状态空间模型,通过数值模拟研究了梁在主动振动控制下的响应。采用了速度反馈控制(VFC)和线性二次型调节器(LQR)两种控制方法。研究了不同的控制器增益和权重矩阵对梁振动幅值、稳定时间以及致动器感应电压的影响。LQR控制器被发现比VFC更有效,因为最大感应执行器电压显着降低。对于LQR控制器加权矩阵Q和R,发现增加Q会减少稳定时间并增加致动器感应电压,而增加R会增加稳定时间。提出了一种优化传感器位置和执行器长度的计算方法。结果表明,驱动器的最佳长度约为光束长度的60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing vibration control in a cantilever beam with piezoelectric patches
In this work, the equation of motion of a cantilever beam with two piezoelectric patches, one acting as a sensor and the other as an actuator was first formulated, and the sensor induced voltage, representing the strain in the beam, was calculated. The beam governing equation was converted into a state space model and its response under active vibration control was studied through numerical simulations. Two types of control methods were used, velocity feedback control (VFC) and the Linear Quadratic Regulator (LQR). The effects of varying controller gains and weighting matrices on the beam vibration amplitude and settling time, as well as the induced voltage in the actuator were investigated. The LQR controller was found to be more effective than the VFC as the maximum induced actuator voltage was significantly lower. For the LQR controller weighting matrices Q and R, it was found that increasing Q reduces settling time and increases the actuator induced voltage, while increasing R, increases settling time. A calculation method for optimizing sensor placement and actuator length is also presented. The results indicate that the optimal actuator length is about 60% of the beam length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信