Ei Ando, M. Yamashita, Toshio Nakata, Y. Matsunaga
{"title":"统计最长路径问题及其在逻辑电路延迟分析中的应用","authors":"Ei Ando, M. Yamashita, Toshio Nakata, Y. Matsunaga","doi":"10.1145/589411.589440","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for estimating, in the sense below, the length of a longest path of a given directed acyclic graph (DAG) whose edge lengths are given as random variables with normal distributions. Let <i>F</i>(<i>x</i>) be the distribution function of the length of a longest path of a given DAG. The algorithm computes a normal distribution function &Ftilde;(<i>x</i>) such that ˜F(<i>x</i>) 〈 <i>F</i>(<i>x</i>) if <i>F</i>(<i>x</i>) 〉 <i>a</i>, given a constant <i>a</i> (0.5 〈 <i>a</i> 〈 1.0). We conduct two experiments to demonstrate the accuracy of &Ftilde;(<i>x</i>).","PeriodicalId":338381,"journal":{"name":"TAU '02","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The statistical longest path problem and its application to delay analysis of logical circuits\",\"authors\":\"Ei Ando, M. Yamashita, Toshio Nakata, Y. Matsunaga\",\"doi\":\"10.1145/589411.589440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm for estimating, in the sense below, the length of a longest path of a given directed acyclic graph (DAG) whose edge lengths are given as random variables with normal distributions. Let <i>F</i>(<i>x</i>) be the distribution function of the length of a longest path of a given DAG. The algorithm computes a normal distribution function &Ftilde;(<i>x</i>) such that ˜F(<i>x</i>) 〈 <i>F</i>(<i>x</i>) if <i>F</i>(<i>x</i>) 〉 <i>a</i>, given a constant <i>a</i> (0.5 〈 <i>a</i> 〈 1.0). We conduct two experiments to demonstrate the accuracy of &Ftilde;(<i>x</i>).\",\"PeriodicalId\":338381,\"journal\":{\"name\":\"TAU '02\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TAU '02\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/589411.589440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TAU '02","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/589411.589440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The statistical longest path problem and its application to delay analysis of logical circuits
This paper presents an algorithm for estimating, in the sense below, the length of a longest path of a given directed acyclic graph (DAG) whose edge lengths are given as random variables with normal distributions. Let F(x) be the distribution function of the length of a longest path of a given DAG. The algorithm computes a normal distribution function &Ftilde;(x) such that ˜F(x) 〈 F(x) if F(x) 〉 a, given a constant a (0.5 〈 a 〈 1.0). We conduct two experiments to demonstrate the accuracy of &Ftilde;(x).