用模压法制备用于热化学储能的稳定盐结构

A. Gladen, F. Azarmi
{"title":"用模压法制备用于热化学储能的稳定盐结构","authors":"A. Gladen, F. Azarmi","doi":"10.1115/es2021-63188","DOIUrl":null,"url":null,"abstract":"\n The present work investigates using a molding technique to fabricate stable salt structures for thermochemical energy storage. Two type of salts were investigated: pure MgSO4 and a blend of 53% CaCl2 with 47% MgSO4. These salts were mixed with two common binders and hot pressed. Various post-hot-pressing conditions were considered including the debinding temperature, whether the sample was sintered, and the sintering temperature. The samples were subjected to combined hydration and thermal cycling. The hydration reaction was monitored by measuring the relative humidity. The samples were visibly inspected for changes between each half cycle. The results indicate that molding can result in stable structures. All the samples of 53wt%CaCl2+47%wtMgSO4 and one sample of pure MgSO4 retained their integrity through the course of cycling. Of the samples that did not retain their integrity through cycling, the results show that fabrication parameters can be used to improve the cycle stability of the molded sample. The hydration data shows that, for the samples that retained their structure, stable hydration rates were achieved. This indicates that the structure stabilized. These results show the feasibility of using molding or similar manufacturing techniques to fabricate a stable structure of hygroscopic salts for thermochemical-based, thermal energy storage.","PeriodicalId":256237,"journal":{"name":"ASME 2021 15th International Conference on Energy Sustainability","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Molding to Fabricate Stable Salt Structures for Thermochemical Energy Storage\",\"authors\":\"A. Gladen, F. Azarmi\",\"doi\":\"10.1115/es2021-63188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present work investigates using a molding technique to fabricate stable salt structures for thermochemical energy storage. Two type of salts were investigated: pure MgSO4 and a blend of 53% CaCl2 with 47% MgSO4. These salts were mixed with two common binders and hot pressed. Various post-hot-pressing conditions were considered including the debinding temperature, whether the sample was sintered, and the sintering temperature. The samples were subjected to combined hydration and thermal cycling. The hydration reaction was monitored by measuring the relative humidity. The samples were visibly inspected for changes between each half cycle. The results indicate that molding can result in stable structures. All the samples of 53wt%CaCl2+47%wtMgSO4 and one sample of pure MgSO4 retained their integrity through the course of cycling. Of the samples that did not retain their integrity through cycling, the results show that fabrication parameters can be used to improve the cycle stability of the molded sample. The hydration data shows that, for the samples that retained their structure, stable hydration rates were achieved. This indicates that the structure stabilized. These results show the feasibility of using molding or similar manufacturing techniques to fabricate a stable structure of hygroscopic salts for thermochemical-based, thermal energy storage.\",\"PeriodicalId\":256237,\"journal\":{\"name\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2021-63188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 15th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2021-63188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了利用成型技术制备用于热化学储能的稳定盐结构。研究了两种类型的盐:纯MgSO4和53% CaCl2与47% MgSO4的混合物。这些盐与两种常见的粘合剂混合并热压。考虑了各种热压后条件,包括脱粘温度、试样是否烧结和烧结温度。试样经受了水化和热循环的双重作用。通过测量相对湿度来监测水化反应。每个半周期之间的变化对样品进行了明显的检查。结果表明,模压成型可以得到稳定的结构。在循环过程中,所有53wt%CaCl2+47%wtMgSO4样品和一个纯MgSO4样品都保持了完整性。对于循环过程中未保持其完整性的样品,结果表明,制造参数可以提高成型样品的循环稳定性。水化数据表明,对于保留其结构的样品,实现了稳定的水化速率。这表明结构稳定。这些结果表明,使用成型或类似的制造技术来制造结构稳定的吸湿盐,用于热化学的热能储存是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Molding to Fabricate Stable Salt Structures for Thermochemical Energy Storage
The present work investigates using a molding technique to fabricate stable salt structures for thermochemical energy storage. Two type of salts were investigated: pure MgSO4 and a blend of 53% CaCl2 with 47% MgSO4. These salts were mixed with two common binders and hot pressed. Various post-hot-pressing conditions were considered including the debinding temperature, whether the sample was sintered, and the sintering temperature. The samples were subjected to combined hydration and thermal cycling. The hydration reaction was monitored by measuring the relative humidity. The samples were visibly inspected for changes between each half cycle. The results indicate that molding can result in stable structures. All the samples of 53wt%CaCl2+47%wtMgSO4 and one sample of pure MgSO4 retained their integrity through the course of cycling. Of the samples that did not retain their integrity through cycling, the results show that fabrication parameters can be used to improve the cycle stability of the molded sample. The hydration data shows that, for the samples that retained their structure, stable hydration rates were achieved. This indicates that the structure stabilized. These results show the feasibility of using molding or similar manufacturing techniques to fabricate a stable structure of hygroscopic salts for thermochemical-based, thermal energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信