电动和插电式混合动力汽车的多电池系统设计

Taesic Kim, W. Qiao, Liyan Qu
{"title":"电动和插电式混合动力汽车的多电池系统设计","authors":"Taesic Kim, W. Qiao, Liyan Qu","doi":"10.1109/IEVC.2012.6183240","DOIUrl":null,"url":null,"abstract":"The performance of electric vehicles (EVs) and plug-in hybrid electric vehicle (PHEVs) strongly relies on their battery storage system, which consists of multiple battery cells connected in series and parallel. However, cell state variations are commonly present, which reduces the energy conversion efficiency of the battery system. Furthermore, in a large battery system the risk of catastrophic faults of cells increases because a large numbers of cells are used. To solve these problems, this paper proposes a novel power electronics-enabled, self-X, multicell battery system design. The proposed battery system can self-heal from failures or abnormal operations of single or multiple cells and self-balance from cell state variations. These features are achieved by a cell switching circuit and a high-performance battery management system (BMS). The proposed design is validated by simulation studies in MATLAB Simulink for a battery system containing five modules connected in series, where each module consists of 6×3 cylindrical lithium-ion cells. The proposed design is scalable to large battery systems for EV/PHEV applications.","PeriodicalId":134818,"journal":{"name":"2012 IEEE International Electric Vehicle Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A multicell battery system design for electric and plug-in hybrid electric vehicles\",\"authors\":\"Taesic Kim, W. Qiao, Liyan Qu\",\"doi\":\"10.1109/IEVC.2012.6183240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of electric vehicles (EVs) and plug-in hybrid electric vehicle (PHEVs) strongly relies on their battery storage system, which consists of multiple battery cells connected in series and parallel. However, cell state variations are commonly present, which reduces the energy conversion efficiency of the battery system. Furthermore, in a large battery system the risk of catastrophic faults of cells increases because a large numbers of cells are used. To solve these problems, this paper proposes a novel power electronics-enabled, self-X, multicell battery system design. The proposed battery system can self-heal from failures or abnormal operations of single or multiple cells and self-balance from cell state variations. These features are achieved by a cell switching circuit and a high-performance battery management system (BMS). The proposed design is validated by simulation studies in MATLAB Simulink for a battery system containing five modules connected in series, where each module consists of 6×3 cylindrical lithium-ion cells. The proposed design is scalable to large battery systems for EV/PHEV applications.\",\"PeriodicalId\":134818,\"journal\":{\"name\":\"2012 IEEE International Electric Vehicle Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Electric Vehicle Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEVC.2012.6183240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Electric Vehicle Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2012.6183240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

电动汽车(ev)和插电式混合动力汽车(phev)的性能在很大程度上依赖于它们的电池存储系统,该系统由多个串联和并联的电池组成。然而,通常存在电池状态变化,这降低了电池系统的能量转换效率。此外,在大型电池系统中,由于大量使用电池,电池灾难性故障的风险增加。为了解决这些问题,本文提出了一种新颖的电力电子启用、自x、多电池系统设计。所提出的电池系统可以从单个或多个电池的故障或异常操作中自愈,并从电池状态变化中自平衡。这些功能是通过电池开关电路和高性能电池管理系统(BMS)实现的。在MATLAB Simulink中对包含五个串联模块的电池系统进行了仿真研究,其中每个模块由6×3圆柱形锂离子电池组成。提出的设计可扩展到EV/PHEV应用的大型电池系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multicell battery system design for electric and plug-in hybrid electric vehicles
The performance of electric vehicles (EVs) and plug-in hybrid electric vehicle (PHEVs) strongly relies on their battery storage system, which consists of multiple battery cells connected in series and parallel. However, cell state variations are commonly present, which reduces the energy conversion efficiency of the battery system. Furthermore, in a large battery system the risk of catastrophic faults of cells increases because a large numbers of cells are used. To solve these problems, this paper proposes a novel power electronics-enabled, self-X, multicell battery system design. The proposed battery system can self-heal from failures or abnormal operations of single or multiple cells and self-balance from cell state variations. These features are achieved by a cell switching circuit and a high-performance battery management system (BMS). The proposed design is validated by simulation studies in MATLAB Simulink for a battery system containing five modules connected in series, where each module consists of 6×3 cylindrical lithium-ion cells. The proposed design is scalable to large battery systems for EV/PHEV applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信