{"title":"一种用于无线通信的标准无乘法器FFT处理器的FPGA实现","authors":"Mahmud Benhamid, Masuri Othman","doi":"10.1109/SMELEC.2006.380712","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel fully parallel FFT architecture based on canonical signed digit (CSD) multiplier-less targeting wireless communication applications, such as IEEE802.15.3a wireless personal area network (WPAN) baseband. The proposed architecture has the advantages of high throughput, less latency, and smaller area. The multiplier-less architecture uses shift- and-add operations to realize the complex multiplier and uses the CSD to optimize these operations. The design has been coded in Verilog HDL targeting Xilinx Virtex-II FPGA series. It is fully implemented and tested on real hardware using Virtex-II FG456 prototype board. Based on this architecture, the implementation of 8-points FFT on Virtex-II can run at a maximum clock frequency of about 400 MHz which lead to about 3.2 GS/s throughput with a latency of 6 clock cycles using 16,580 equivalent gates. Comparison with a conventional parallel architecture design of the same size can run only at a maximum clock frequency of 220 MHz or 1.76 GS/s throughput with a latency of 12 clock cycles using 77,418 equivalent gates for the design. The resulting throughput increases by about 82% while the equivalent gates and latency decrease by about 79% and 50% respectively.","PeriodicalId":136703,"journal":{"name":"2006 IEEE International Conference on Semiconductor Electronics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"FPGA Implementation of a Canonical Signed Digit Multiplier-less based FFT Processor for Wireless Communication Applications\",\"authors\":\"Mahmud Benhamid, Masuri Othman\",\"doi\":\"10.1109/SMELEC.2006.380712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel fully parallel FFT architecture based on canonical signed digit (CSD) multiplier-less targeting wireless communication applications, such as IEEE802.15.3a wireless personal area network (WPAN) baseband. The proposed architecture has the advantages of high throughput, less latency, and smaller area. The multiplier-less architecture uses shift- and-add operations to realize the complex multiplier and uses the CSD to optimize these operations. The design has been coded in Verilog HDL targeting Xilinx Virtex-II FPGA series. It is fully implemented and tested on real hardware using Virtex-II FG456 prototype board. Based on this architecture, the implementation of 8-points FFT on Virtex-II can run at a maximum clock frequency of about 400 MHz which lead to about 3.2 GS/s throughput with a latency of 6 clock cycles using 16,580 equivalent gates. Comparison with a conventional parallel architecture design of the same size can run only at a maximum clock frequency of 220 MHz or 1.76 GS/s throughput with a latency of 12 clock cycles using 77,418 equivalent gates for the design. The resulting throughput increases by about 82% while the equivalent gates and latency decrease by about 79% and 50% respectively.\",\"PeriodicalId\":136703,\"journal\":{\"name\":\"2006 IEEE International Conference on Semiconductor Electronics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Semiconductor Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2006.380712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Semiconductor Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2006.380712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA Implementation of a Canonical Signed Digit Multiplier-less based FFT Processor for Wireless Communication Applications
This paper proposes a novel fully parallel FFT architecture based on canonical signed digit (CSD) multiplier-less targeting wireless communication applications, such as IEEE802.15.3a wireless personal area network (WPAN) baseband. The proposed architecture has the advantages of high throughput, less latency, and smaller area. The multiplier-less architecture uses shift- and-add operations to realize the complex multiplier and uses the CSD to optimize these operations. The design has been coded in Verilog HDL targeting Xilinx Virtex-II FPGA series. It is fully implemented and tested on real hardware using Virtex-II FG456 prototype board. Based on this architecture, the implementation of 8-points FFT on Virtex-II can run at a maximum clock frequency of about 400 MHz which lead to about 3.2 GS/s throughput with a latency of 6 clock cycles using 16,580 equivalent gates. Comparison with a conventional parallel architecture design of the same size can run only at a maximum clock frequency of 220 MHz or 1.76 GS/s throughput with a latency of 12 clock cycles using 77,418 equivalent gates for the design. The resulting throughput increases by about 82% while the equivalent gates and latency decrease by about 79% and 50% respectively.