一种用于神经辐射场加速器的高能效精确可扩展计算阵列

Chaolin Rao, Haochuan Wan, Yueyang Zheng, Pingqiang Zhou, Xin Lou
{"title":"一种用于神经辐射场加速器的高能效精确可扩展计算阵列","authors":"Chaolin Rao, Haochuan Wan, Yueyang Zheng, Pingqiang Zhou, Xin Lou","doi":"10.1109/APCCAS55924.2022.10090268","DOIUrl":null,"url":null,"abstract":"Neural Radiance Field (NeRF), a recent advance in neural rendering, demonstrates impressive results for photo-realistic novel view synthesis. However, it faces challenges for deployment in practical rendering applications due to the large amount of multiply-accumulate (MAC) operations. For hardware accelerator design, precision-scalable MAC array, which can support computations with various precision can be used to optimize the power consumption of NeRF rendering accelerators. Recently, a variety of precision-scalable MAC arrays have been proposed to reduce the computational complexity of Convolutional Neural Networks (CNN). However, most of them require a lot of control logic to support different levels of precision. This paper proposes a precision-scalable MAC array with serial mode, which can support the multiplication with different precision of weight in multiple cycles with little overhead. Implementation results show that the energy efficiency of the proposed MAC array is about 14.54 TOPS/W and 4.83 TOPS/W for 4-bit and 8-bit computation modes, superior to other existing precision-scalable solutions.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Energy Efficient Precision Scalable Computation Array for Neural Radiance Field Accelerator\",\"authors\":\"Chaolin Rao, Haochuan Wan, Yueyang Zheng, Pingqiang Zhou, Xin Lou\",\"doi\":\"10.1109/APCCAS55924.2022.10090268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Radiance Field (NeRF), a recent advance in neural rendering, demonstrates impressive results for photo-realistic novel view synthesis. However, it faces challenges for deployment in practical rendering applications due to the large amount of multiply-accumulate (MAC) operations. For hardware accelerator design, precision-scalable MAC array, which can support computations with various precision can be used to optimize the power consumption of NeRF rendering accelerators. Recently, a variety of precision-scalable MAC arrays have been proposed to reduce the computational complexity of Convolutional Neural Networks (CNN). However, most of them require a lot of control logic to support different levels of precision. This paper proposes a precision-scalable MAC array with serial mode, which can support the multiplication with different precision of weight in multiple cycles with little overhead. Implementation results show that the energy efficiency of the proposed MAC array is about 14.54 TOPS/W and 4.83 TOPS/W for 4-bit and 8-bit computation modes, superior to other existing precision-scalable solutions.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经辐射场(Neural Radiance Field, NeRF)是神经渲染技术的最新进展,它展示了令人印象深刻的图像真实感新视图合成结果。然而,由于大量的乘法累加(multiple -accumulate, MAC)操作,它在实际渲染应用中的部署面临挑战。对于硬件加速器设计,可支持各种精度计算的精度可扩展MAC阵列可用于优化NeRF渲染加速器的功耗。最近,人们提出了各种精度可扩展的MAC阵列来降低卷积神经网络(CNN)的计算复杂度。然而,它们中的大多数都需要大量的控制逻辑来支持不同级别的精度。本文提出了一种串行模式的精度可扩展MAC阵列,该阵列可以支持不同权值精度的多周期乘法,且开销很小。实现结果表明,在4位和8位计算模式下,所提出的MAC阵列的能量效率分别为14.54 TOPS/W和4.83 TOPS/W,优于现有的精度可扩展解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy Efficient Precision Scalable Computation Array for Neural Radiance Field Accelerator
Neural Radiance Field (NeRF), a recent advance in neural rendering, demonstrates impressive results for photo-realistic novel view synthesis. However, it faces challenges for deployment in practical rendering applications due to the large amount of multiply-accumulate (MAC) operations. For hardware accelerator design, precision-scalable MAC array, which can support computations with various precision can be used to optimize the power consumption of NeRF rendering accelerators. Recently, a variety of precision-scalable MAC arrays have been proposed to reduce the computational complexity of Convolutional Neural Networks (CNN). However, most of them require a lot of control logic to support different levels of precision. This paper proposes a precision-scalable MAC array with serial mode, which can support the multiplication with different precision of weight in multiple cycles with little overhead. Implementation results show that the energy efficiency of the proposed MAC array is about 14.54 TOPS/W and 4.83 TOPS/W for 4-bit and 8-bit computation modes, superior to other existing precision-scalable solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信