每秒太比特芯片对芯片接口的互连技术

Behzad Dehlaghi, R. Beerkens, D. Tonietto, A. C. Carusone
{"title":"每秒太比特芯片对芯片接口的互连技术","authors":"Behzad Dehlaghi, R. Beerkens, D. Tonietto, A. C. Carusone","doi":"10.1109/CSICS.2016.7751049","DOIUrl":null,"url":null,"abstract":"Seamless package-level integration of multiple dies for high-performance computing and networking requires broadband dense die-to-die interconnect. Organic packaging substrates offer lower cost and lower loss interconnect, whereas silicon interposers offer higher density interconnect. In this work, a silicon interposer is fabricated in a relatively inexpensive 0.35 μm CMOS technology as an alternative to conventional organic or silicon interposer substrates. Flip-chip assembly technologies such as solder and gold-stud bumping are discussed. Measured eye diagrams at 16.4 Gb/s and bathtub curves at 20 Gb/s show the impact of assembly and bumping technology on the link performance. Considering signal integrity issues such as inter-symbol interference (ISI) and crosstalk, the maximum achievable aggregate bit rate is estimated for different interconnect lengths.","PeriodicalId":183218,"journal":{"name":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interconnect Technologies for Terabit-per-Second Die-to-Die Interfaces\",\"authors\":\"Behzad Dehlaghi, R. Beerkens, D. Tonietto, A. C. Carusone\",\"doi\":\"10.1109/CSICS.2016.7751049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seamless package-level integration of multiple dies for high-performance computing and networking requires broadband dense die-to-die interconnect. Organic packaging substrates offer lower cost and lower loss interconnect, whereas silicon interposers offer higher density interconnect. In this work, a silicon interposer is fabricated in a relatively inexpensive 0.35 μm CMOS technology as an alternative to conventional organic or silicon interposer substrates. Flip-chip assembly technologies such as solder and gold-stud bumping are discussed. Measured eye diagrams at 16.4 Gb/s and bathtub curves at 20 Gb/s show the impact of assembly and bumping technology on the link performance. Considering signal integrity issues such as inter-symbol interference (ISI) and crosstalk, the maximum achievable aggregate bit rate is estimated for different interconnect lengths.\",\"PeriodicalId\":183218,\"journal\":{\"name\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2016.7751049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2016.7751049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为实现高性能计算和网络,多个芯片的无缝封装级集成需要宽带密集的芯片间互连。有机封装衬底提供更低的成本和更低的损耗互连,而硅中间层提供更高密度的互连。在这项工作中,硅中间层是用相对便宜的0.35 μm CMOS技术制造的,作为传统有机或硅中间层衬底的替代品。讨论了倒装芯片组装技术,如焊料和金螺柱碰撞。16.4 Gb/s的眼图和20 Gb/s的浴缸曲线显示了组装和碰撞技术对链路性能的影响。考虑到码间干扰(ISI)和串扰等信号完整性问题,估计了不同互连长度下可实现的最大聚合比特率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interconnect Technologies for Terabit-per-Second Die-to-Die Interfaces
Seamless package-level integration of multiple dies for high-performance computing and networking requires broadband dense die-to-die interconnect. Organic packaging substrates offer lower cost and lower loss interconnect, whereas silicon interposers offer higher density interconnect. In this work, a silicon interposer is fabricated in a relatively inexpensive 0.35 μm CMOS technology as an alternative to conventional organic or silicon interposer substrates. Flip-chip assembly technologies such as solder and gold-stud bumping are discussed. Measured eye diagrams at 16.4 Gb/s and bathtub curves at 20 Gb/s show the impact of assembly and bumping technology on the link performance. Considering signal integrity issues such as inter-symbol interference (ISI) and crosstalk, the maximum achievable aggregate bit rate is estimated for different interconnect lengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信