E. Z. Tabasy, Ayman Shafik, S. Huang, N. Yang, S. Hoyos, S. Palermo
{"title":"在90nm CMOS中嵌入DFE的6b 1.6GS/s冗余周期1抽头ADC","authors":"E. Z. Tabasy, Ayman Shafik, S. Huang, N. Yang, S. Hoyos, S. Palermo","doi":"10.1109/CICC.2012.6330582","DOIUrl":null,"url":null,"abstract":"Serial link receivers with ADC front-ends are emerging in order to scale data rates over high attenuation channels. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-efficient receiver. This paper presents a 6b 1.6GS/s ADC with a novel embedded DFE structure. Leveraging a time-interleaved SAR ADC architecture, a redundant cycle loop-unrolled technique is proposed in order to relax the DFE feedback critical path delay with low power/area overhead. Fabricated in an LP 90nm CMOS process, the 6b ADC with embedded 1-tap DFE consumes 20mW total power, including front-end T/Hs and reference buffers, and the core time-interleaved ADC occupies 0.24mm2 area.","PeriodicalId":130434,"journal":{"name":"Proceedings of the IEEE 2012 Custom Integrated Circuits Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A 6b 1.6GS/s ADC with redundant cycle 1-tap embedded DFE in 90nm CMOS\",\"authors\":\"E. Z. Tabasy, Ayman Shafik, S. Huang, N. Yang, S. Hoyos, S. Palermo\",\"doi\":\"10.1109/CICC.2012.6330582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serial link receivers with ADC front-ends are emerging in order to scale data rates over high attenuation channels. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-efficient receiver. This paper presents a 6b 1.6GS/s ADC with a novel embedded DFE structure. Leveraging a time-interleaved SAR ADC architecture, a redundant cycle loop-unrolled technique is proposed in order to relax the DFE feedback critical path delay with low power/area overhead. Fabricated in an LP 90nm CMOS process, the 6b ADC with embedded 1-tap DFE consumes 20mW total power, including front-end T/Hs and reference buffers, and the core time-interleaved ADC occupies 0.24mm2 area.\",\"PeriodicalId\":130434,\"journal\":{\"name\":\"Proceedings of the IEEE 2012 Custom Integrated Circuits Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2012 Custom Integrated Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2012.6330582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2012 Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2012.6330582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 6b 1.6GS/s ADC with redundant cycle 1-tap embedded DFE in 90nm CMOS
Serial link receivers with ADC front-ends are emerging in order to scale data rates over high attenuation channels. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-efficient receiver. This paper presents a 6b 1.6GS/s ADC with a novel embedded DFE structure. Leveraging a time-interleaved SAR ADC architecture, a redundant cycle loop-unrolled technique is proposed in order to relax the DFE feedback critical path delay with low power/area overhead. Fabricated in an LP 90nm CMOS process, the 6b ADC with embedded 1-tap DFE consumes 20mW total power, including front-end T/Hs and reference buffers, and the core time-interleaved ADC occupies 0.24mm2 area.