一种改进的定位测距RSSI算法

Y. Qian, Nana Shan
{"title":"一种改进的定位测距RSSI算法","authors":"Y. Qian, Nana Shan","doi":"10.1109/CISCE58541.2023.10142756","DOIUrl":null,"url":null,"abstract":"Based on the shadowing model, this paper uses the least-squares method to fit the environment parameters, and at the same time makes a weighted Gaussian improvement on the measured RSSI data. Finally, the improved trilateral measurement positioning algorithm is used to locate the target node. The experimental results show that this algorithm is less affected by the environmental factors, and has higher accuracy than the traditional RSSI positioning algorithm. It can be used in wireless sensor networks.","PeriodicalId":145263,"journal":{"name":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Positioning and Ranging RSSI Algorithm\",\"authors\":\"Y. Qian, Nana Shan\",\"doi\":\"10.1109/CISCE58541.2023.10142756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the shadowing model, this paper uses the least-squares method to fit the environment parameters, and at the same time makes a weighted Gaussian improvement on the measured RSSI data. Finally, the improved trilateral measurement positioning algorithm is used to locate the target node. The experimental results show that this algorithm is less affected by the environmental factors, and has higher accuracy than the traditional RSSI positioning algorithm. It can be used in wireless sensor networks.\",\"PeriodicalId\":145263,\"journal\":{\"name\":\"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISCE58541.2023.10142756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE58541.2023.10142756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在阴影模型的基础上,采用最小二乘法拟合环境参数,同时对实测RSSI数据进行加权高斯改进。最后,采用改进的三边测量定位算法对目标节点进行定位。实验结果表明,该算法受环境因素的影响较小,比传统的RSSI定位算法具有更高的精度。它可用于无线传感器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Positioning and Ranging RSSI Algorithm
Based on the shadowing model, this paper uses the least-squares method to fit the environment parameters, and at the same time makes a weighted Gaussian improvement on the measured RSSI data. Finally, the improved trilateral measurement positioning algorithm is used to locate the target node. The experimental results show that this algorithm is less affected by the environmental factors, and has higher accuracy than the traditional RSSI positioning algorithm. It can be used in wireless sensor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信