图像特征和季节重新审视

T. Krajník, P. Cristóforis, M. Nitsche, Keerthy Kusumam, T. Duckett
{"title":"图像特征和季节重新审视","authors":"T. Krajník, P. Cristóforis, M. Nitsche, Keerthy Kusumam, T. Duckett","doi":"10.1109/ECMR.2015.7324193","DOIUrl":null,"url":null,"abstract":"We present an evaluation of standard image features in the context of long-term visual teach-and-repeat mobile robot navigation, where the environment exhibits significant changes in appearance caused by seasonal weather variations and daily illumination changes. We argue that in the given long-term scenario, the viewpoint, scale and rotation invariance of the standard feature extractors is less important than their robustness to the mid- and long-term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to variable lighting and naturally-occurring seasonal changes. We evaluate the image feature extractors on three datasets collected by mobile robots in two different outdoor environments over the course of one year. Based on this analysis, we propose a novel feature descriptor based on a combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF (Generated BRIEF). In terms of robustness to seasonal changes, the GRIEF feature descriptor outperforms the other ones while being computationally more efficient.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Image features and seasons revisited\",\"authors\":\"T. Krajník, P. Cristóforis, M. Nitsche, Keerthy Kusumam, T. Duckett\",\"doi\":\"10.1109/ECMR.2015.7324193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an evaluation of standard image features in the context of long-term visual teach-and-repeat mobile robot navigation, where the environment exhibits significant changes in appearance caused by seasonal weather variations and daily illumination changes. We argue that in the given long-term scenario, the viewpoint, scale and rotation invariance of the standard feature extractors is less important than their robustness to the mid- and long-term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to variable lighting and naturally-occurring seasonal changes. We evaluate the image feature extractors on three datasets collected by mobile robots in two different outdoor environments over the course of one year. Based on this analysis, we propose a novel feature descriptor based on a combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF (Generated BRIEF). In terms of robustness to seasonal changes, the GRIEF feature descriptor outperforms the other ones while being computationally more efficient.\",\"PeriodicalId\":142754,\"journal\":{\"name\":\"2015 European Conference on Mobile Robots (ECMR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2015.7324193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们提出了在长期视觉教学和重复移动机器人导航背景下的标准图像特征评估,其中环境表现出由季节天气变化和日常照明变化引起的显着外观变化。我们认为,在给定的长期场景中,标准特征提取器的视点、尺度和旋转不变性不如其对中长期环境外观变化的鲁棒性重要。因此,我们将重点放在图像配准对可变光照和自然季节变化的鲁棒性评估上。我们对移动机器人在两种不同的室外环境中收集的三个数据集的图像特征提取器进行了一年的评估。在此基础上,我们提出了一种新的基于进化算法和二值鲁棒独立基本特征相结合的特征描述符,我们称之为GRIEF (Generated BRIEF)。在对季节变化的鲁棒性方面,GRIEF特征描述符优于其他特征描述符,同时计算效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image features and seasons revisited
We present an evaluation of standard image features in the context of long-term visual teach-and-repeat mobile robot navigation, where the environment exhibits significant changes in appearance caused by seasonal weather variations and daily illumination changes. We argue that in the given long-term scenario, the viewpoint, scale and rotation invariance of the standard feature extractors is less important than their robustness to the mid- and long-term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to variable lighting and naturally-occurring seasonal changes. We evaluate the image feature extractors on three datasets collected by mobile robots in two different outdoor environments over the course of one year. Based on this analysis, we propose a novel feature descriptor based on a combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF (Generated BRIEF). In terms of robustness to seasonal changes, the GRIEF feature descriptor outperforms the other ones while being computationally more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信