{"title":"自下而上的领先宏观经济指标:使用机器学习在非金融企业违约中的应用","authors":"Tyler Pike, Horacio. Sapriza, Tom Zimmermann","doi":"10.17016/FEDS.2019.070","DOIUrl":null,"url":null,"abstract":"This paper constructs a leading macroeconomic indicator from microeconomic data using recent machine learning techniques. Using tree-based methods, we estimate probabilities of default for publicly traded non-financial firms in the United States. We then use the cross-section of out-of-sample predicted default probabilities to construct a leading indicator of non-financial corporate health. The index predicts real economic outcomes such as GDP growth and employment up to eight quarters ahead. Impulse responses validate the interpretation of the index as a measure of financial stress.","PeriodicalId":153113,"journal":{"name":"Board of Governors of the Federal Reserve System Research Series","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bottom-Up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults Using Machine Learning\",\"authors\":\"Tyler Pike, Horacio. Sapriza, Tom Zimmermann\",\"doi\":\"10.17016/FEDS.2019.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper constructs a leading macroeconomic indicator from microeconomic data using recent machine learning techniques. Using tree-based methods, we estimate probabilities of default for publicly traded non-financial firms in the United States. We then use the cross-section of out-of-sample predicted default probabilities to construct a leading indicator of non-financial corporate health. The index predicts real economic outcomes such as GDP growth and employment up to eight quarters ahead. Impulse responses validate the interpretation of the index as a measure of financial stress.\",\"PeriodicalId\":153113,\"journal\":{\"name\":\"Board of Governors of the Federal Reserve System Research Series\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Board of Governors of the Federal Reserve System Research Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17016/FEDS.2019.070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Board of Governors of the Federal Reserve System Research Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17016/FEDS.2019.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bottom-Up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults Using Machine Learning
This paper constructs a leading macroeconomic indicator from microeconomic data using recent machine learning techniques. Using tree-based methods, we estimate probabilities of default for publicly traded non-financial firms in the United States. We then use the cross-section of out-of-sample predicted default probabilities to construct a leading indicator of non-financial corporate health. The index predicts real economic outcomes such as GDP growth and employment up to eight quarters ahead. Impulse responses validate the interpretation of the index as a measure of financial stress.