S. Wakimoto, J. Nakajima, M. Takata, T. Kanda, K. Suzumori
{"title":"用于小管道检测的微型蛇形机器人","authors":"S. Wakimoto, J. Nakajima, M. Takata, T. Kanda, K. Suzumori","doi":"10.1109/MHS.2003.1249959","DOIUrl":null,"url":null,"abstract":"The goal of this research is development of a micro robot which can negotiate pipes whose diameter varies widely. The robot mechanism is based on \"snaking drive\". First, in section 1 to 4, basic characteristics of the snaking drive are discussed: the principle of the snaking drive is shown, theoretical fundamental formulas are derived, and the motions of the robot are simulated. Second, in section 5, a micro robot was designed, fabricated and tested. And fundamental experiments of the robot are shown. Third, in section 6, two application experiments are shown: one is a stabilization of camera image, and the other is a robot steering at branches. The robot moved in pipes whose diameter varies between 18 mm to 100 mm with the maximum speed of 36 mm/s. And the robot could negotiate T-branches and L-bends of pipes.","PeriodicalId":358698,"journal":{"name":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"A micro snake-like robot for small pipe inspection\",\"authors\":\"S. Wakimoto, J. Nakajima, M. Takata, T. Kanda, K. Suzumori\",\"doi\":\"10.1109/MHS.2003.1249959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is development of a micro robot which can negotiate pipes whose diameter varies widely. The robot mechanism is based on \\\"snaking drive\\\". First, in section 1 to 4, basic characteristics of the snaking drive are discussed: the principle of the snaking drive is shown, theoretical fundamental formulas are derived, and the motions of the robot are simulated. Second, in section 5, a micro robot was designed, fabricated and tested. And fundamental experiments of the robot are shown. Third, in section 6, two application experiments are shown: one is a stabilization of camera image, and the other is a robot steering at branches. The robot moved in pipes whose diameter varies between 18 mm to 100 mm with the maximum speed of 36 mm/s. And the robot could negotiate T-branches and L-bends of pipes.\",\"PeriodicalId\":358698,\"journal\":{\"name\":\"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2003.1249959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2003.1249959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A micro snake-like robot for small pipe inspection
The goal of this research is development of a micro robot which can negotiate pipes whose diameter varies widely. The robot mechanism is based on "snaking drive". First, in section 1 to 4, basic characteristics of the snaking drive are discussed: the principle of the snaking drive is shown, theoretical fundamental formulas are derived, and the motions of the robot are simulated. Second, in section 5, a micro robot was designed, fabricated and tested. And fundamental experiments of the robot are shown. Third, in section 6, two application experiments are shown: one is a stabilization of camera image, and the other is a robot steering at branches. The robot moved in pipes whose diameter varies between 18 mm to 100 mm with the maximum speed of 36 mm/s. And the robot could negotiate T-branches and L-bends of pipes.