片上时钟测试和频率测量

R. Tekumalla, Prakash Krishnamoorthy
{"title":"片上时钟测试和频率测量","authors":"R. Tekumalla, Prakash Krishnamoorthy","doi":"10.1109/NATW.2014.12","DOIUrl":null,"url":null,"abstract":"This work presents a method to measure the frequency of an on-chip test clock in relation to a reference clock. Frequency measurement is accomplished by counting pulses of both test and reference clocks, albeit adjusting the reference clock pulse count to estimate the number of pulses that the test clock is expected to see. The proposed method places no constraints on the frequency relationship between the test and reference clocks which allows the reference clock frequency to be any multiple δ (1 <; δ ≤ 1) of the test clock frequency. Doing so allows a high degree of flexibility and a wide range of scenarios for which this approach could be deployed to measure the frequency of an unknown clock. Applications of this approach range from calibrating the frequency of on chip at speed test clocks for DFT, measurement of ppm of clocks subject to variations in process, temperature, spread spectrum effects among other considerations. The method also guarantees cycle to cycle accuracy in frequency measurement. Multiple on chips clocks can be tested using one instance of this method when the frequency information of all clocks to be tested is made available in specific register files.","PeriodicalId":283155,"journal":{"name":"2014 IEEE 23rd North Atlantic Test Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On-chip Clock Testing and Frequency Measurement\",\"authors\":\"R. Tekumalla, Prakash Krishnamoorthy\",\"doi\":\"10.1109/NATW.2014.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a method to measure the frequency of an on-chip test clock in relation to a reference clock. Frequency measurement is accomplished by counting pulses of both test and reference clocks, albeit adjusting the reference clock pulse count to estimate the number of pulses that the test clock is expected to see. The proposed method places no constraints on the frequency relationship between the test and reference clocks which allows the reference clock frequency to be any multiple δ (1 <; δ ≤ 1) of the test clock frequency. Doing so allows a high degree of flexibility and a wide range of scenarios for which this approach could be deployed to measure the frequency of an unknown clock. Applications of this approach range from calibrating the frequency of on chip at speed test clocks for DFT, measurement of ppm of clocks subject to variations in process, temperature, spread spectrum effects among other considerations. The method also guarantees cycle to cycle accuracy in frequency measurement. Multiple on chips clocks can be tested using one instance of this method when the frequency information of all clocks to be tested is made available in specific register files.\",\"PeriodicalId\":283155,\"journal\":{\"name\":\"2014 IEEE 23rd North Atlantic Test Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 23rd North Atlantic Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NATW.2014.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 23rd North Atlantic Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NATW.2014.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作提出了一种测量芯片上测试时钟相对于参考时钟频率的方法。频率测量是通过计算测试时钟和参考时钟的脉冲数来完成的,尽管需要调整参考时钟的脉冲数来估计测试时钟期望看到的脉冲数。该方法不受测试时钟和参考时钟之间频率关系的限制,允许参考时钟频率为任意倍数δ (1 <;测试时钟频率δ≤1)。这样做允许高度的灵活性和广泛的场景,可以部署这种方法来测量未知时钟的频率。该方法的应用范围包括校准芯片上DFT速度测试时钟的频率,测量受工艺、温度、扩频效应等因素影响的时钟的ppm。该方法还保证了频率测量周期到周期的精度。当要测试的所有时钟的频率信息在特定的寄存器文件中可用时,可以使用此方法的一个实例来测试多个片上时钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-chip Clock Testing and Frequency Measurement
This work presents a method to measure the frequency of an on-chip test clock in relation to a reference clock. Frequency measurement is accomplished by counting pulses of both test and reference clocks, albeit adjusting the reference clock pulse count to estimate the number of pulses that the test clock is expected to see. The proposed method places no constraints on the frequency relationship between the test and reference clocks which allows the reference clock frequency to be any multiple δ (1 <; δ ≤ 1) of the test clock frequency. Doing so allows a high degree of flexibility and a wide range of scenarios for which this approach could be deployed to measure the frequency of an unknown clock. Applications of this approach range from calibrating the frequency of on chip at speed test clocks for DFT, measurement of ppm of clocks subject to variations in process, temperature, spread spectrum effects among other considerations. The method also guarantees cycle to cycle accuracy in frequency measurement. Multiple on chips clocks can be tested using one instance of this method when the frequency information of all clocks to be tested is made available in specific register files.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信