BiSim:一种简单高效的双聚类算法

Nighat Noureen, M. Qadir
{"title":"BiSim:一种简单高效的双聚类算法","authors":"Nighat Noureen, M. Qadir","doi":"10.1109/SoCPaR.2009.14","DOIUrl":null,"url":null,"abstract":"Analysis of gene expression data includes classification of the data into groups and subgroups based on similar expression patterns. Standard clustering methods for the analysis of gene expression data only identifies the global models while missing the local expression patterns. In order to identify the missed patterns biclustering approach has been introduced. Various biclustering algorithms have been proposed by scientists. Among them Binary Inclusion maximal algorithm (BiMax) forms biclusters when applied on a gene expression data through divide and conquer approach. The worst-case running-time complexity of BiMax for matrices containing disjoint biclusters is O(nmb) and for arbitrary matrices is of order O(nmb min{n, m}) where b is the number of all inclusion-maximal biclusters in matrix. In this paper we present an improved algorithm, BiSim, for biclustering which is easy and avoids complex computations as in BiMax. The complexity of our approach is O(n*m) for n genes and m conditions, i.e, a matrix of size n*m. Also it avoids extra computations within the same complexity class and avoids missing of any biclusters.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"BiSim: A Simple and Efficient Biclustering Algorithm\",\"authors\":\"Nighat Noureen, M. Qadir\",\"doi\":\"10.1109/SoCPaR.2009.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of gene expression data includes classification of the data into groups and subgroups based on similar expression patterns. Standard clustering methods for the analysis of gene expression data only identifies the global models while missing the local expression patterns. In order to identify the missed patterns biclustering approach has been introduced. Various biclustering algorithms have been proposed by scientists. Among them Binary Inclusion maximal algorithm (BiMax) forms biclusters when applied on a gene expression data through divide and conquer approach. The worst-case running-time complexity of BiMax for matrices containing disjoint biclusters is O(nmb) and for arbitrary matrices is of order O(nmb min{n, m}) where b is the number of all inclusion-maximal biclusters in matrix. In this paper we present an improved algorithm, BiSim, for biclustering which is easy and avoids complex computations as in BiMax. The complexity of our approach is O(n*m) for n genes and m conditions, i.e, a matrix of size n*m. Also it avoids extra computations within the same complexity class and avoids missing of any biclusters.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基因表达数据的分析包括根据相似的表达模式将数据分类为组和亚组。用于基因表达数据分析的标准聚类方法只能识别全局模型,而无法识别局部表达模式。为了识别缺失模式,引入了双聚类方法。科学家们提出了各种不同的双聚类算法。其中,二值包含最大算法(BiMax)通过分而治之的方法对基因表达数据进行处理,形成双聚类。对于包含不相交双聚类的矩阵,其最坏情况下的运行时间复杂度为O(nmb),对于任意矩阵,其最坏情况下的运行时间复杂度为O阶(nmb min{n, m}),其中b为矩阵中所有包含最大双聚类的个数。本文提出了一种改进的双聚类算法BiSim,该算法既简单又避免了BiSim算法的复杂计算。对于n个基因和m个条件,即大小为n*m的矩阵,我们的方法的复杂性为O(n*m)。它还避免了在同一复杂度类中进行额外的计算,避免了丢失任何双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BiSim: A Simple and Efficient Biclustering Algorithm
Analysis of gene expression data includes classification of the data into groups and subgroups based on similar expression patterns. Standard clustering methods for the analysis of gene expression data only identifies the global models while missing the local expression patterns. In order to identify the missed patterns biclustering approach has been introduced. Various biclustering algorithms have been proposed by scientists. Among them Binary Inclusion maximal algorithm (BiMax) forms biclusters when applied on a gene expression data through divide and conquer approach. The worst-case running-time complexity of BiMax for matrices containing disjoint biclusters is O(nmb) and for arbitrary matrices is of order O(nmb min{n, m}) where b is the number of all inclusion-maximal biclusters in matrix. In this paper we present an improved algorithm, BiSim, for biclustering which is easy and avoids complex computations as in BiMax. The complexity of our approach is O(n*m) for n genes and m conditions, i.e, a matrix of size n*m. Also it avoids extra computations within the same complexity class and avoids missing of any biclusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信