分类器在基于生物反馈的心理努力测量中的实验

László Gazdi, K. Pomázi, Bertalan Radostyán, M. Szabó, Luca Szegletes, B. Forstner
{"title":"分类器在基于生物反馈的心理努力测量中的实验","authors":"László Gazdi, K. Pomázi, Bertalan Radostyán, M. Szabó, Luca Szegletes, B. Forstner","doi":"10.1109/COGINFOCOM.2016.7804571","DOIUrl":null,"url":null,"abstract":"Physiological sensors are widely used in order to infer the mental effort of a subject during performing different tasks. Desktop or mobile applications like educational games can gain from such information in order to fine tune the difficulty or the type of a given assignment. Discussions can be found on the advantages and disadvantages of different sensor types (like EEG, ECG, pupillometry, GSR etc.). Machine learning technologies are used to find the baseline of a subject and infer the mental effort levels. In this paper we investigate and compare different types of physiological sensors and classification techniques. Real life experiments with mobile adaptive educational framework (AdaptEd) are presented to support our results.","PeriodicalId":440408,"journal":{"name":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimenting with classifiers in biofeedback-based mental effort measurement\",\"authors\":\"László Gazdi, K. Pomázi, Bertalan Radostyán, M. Szabó, Luca Szegletes, B. Forstner\",\"doi\":\"10.1109/COGINFOCOM.2016.7804571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physiological sensors are widely used in order to infer the mental effort of a subject during performing different tasks. Desktop or mobile applications like educational games can gain from such information in order to fine tune the difficulty or the type of a given assignment. Discussions can be found on the advantages and disadvantages of different sensor types (like EEG, ECG, pupillometry, GSR etc.). Machine learning technologies are used to find the baseline of a subject and infer the mental effort levels. In this paper we investigate and compare different types of physiological sensors and classification techniques. Real life experiments with mobile adaptive educational framework (AdaptEd) are presented to support our results.\",\"PeriodicalId\":440408,\"journal\":{\"name\":\"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINFOCOM.2016.7804571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINFOCOM.2016.7804571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生理传感器被广泛用于推断受试者在执行不同任务时的心理努力。桌面或移动应用程序(如教育游戏)可以从这些信息中获取信息,从而微调难度或给定任务的类型。讨论了不同传感器类型(如EEG, ECG,瞳孔测量,GSR等)的优缺点。机器学习技术用于找到主题的基线并推断心理努力水平。在本文中,我们研究和比较了不同类型的生理传感器和分类技术。实际生活实验与移动自适应教育框架(适应)提出了支持我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimenting with classifiers in biofeedback-based mental effort measurement
Physiological sensors are widely used in order to infer the mental effort of a subject during performing different tasks. Desktop or mobile applications like educational games can gain from such information in order to fine tune the difficulty or the type of a given assignment. Discussions can be found on the advantages and disadvantages of different sensor types (like EEG, ECG, pupillometry, GSR etc.). Machine learning technologies are used to find the baseline of a subject and infer the mental effort levels. In this paper we investigate and compare different types of physiological sensors and classification techniques. Real life experiments with mobile adaptive educational framework (AdaptEd) are presented to support our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信