{"title":"使用射频识别(RFID)标签存储急救人员所需的医疗信息:数据格式、隐私和安全性","authors":"Chris Hart, P. Hawrylak","doi":"10.4018/jcmam.2012070102","DOIUrl":null,"url":null,"abstract":"In the event of an accident or emergency, a victim’s medical information such as blood type, prescribed drugs, and other pertinent medical history is critical to Emergency Medical Technicians (EMTs) so that the correct treatment can be provided to the victim as quickly as possible. Victims of car accidents, heart attacks, etc., are not always able to answer simple but crucial medical questions. Treatment time is critical in an emergency situation and the EMT must quickly obtain correct medical information to provide treatment until the victim is stabilized or admitted to the hospital. With an unconscious patient, the EMT must perform a number of tests to obtain these details. A Radio Frequency Identification (RFID) tag encoded with this information could provide this information quickly and correctly, while saving the time and expense of the tests to answer these questions. The ability of the RFID tag to communicate through objects can minimize the movement of the victim to obtain the necessary information. This paper presents a standardized format for encoding (storing) this information in the RFID tag for use in the United States. The use of data compression techniques are explored to maximize the amount of information able to be stored in the RFID tag. Privacy and security issues with this application are discussed and a potential solution is presented. Using Radio Frequency Identification (RFID) Tags to Store Medical Information Needed by First Responders: Data Format, Privacy, and Security","PeriodicalId":162417,"journal":{"name":"Int. J. Comput. Model. Algorithms Medicine","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Radio Frequency Identification (RFID) Tags to Store Medical Information Needed by First Responders: Data Format, Privacy, and Security\",\"authors\":\"Chris Hart, P. Hawrylak\",\"doi\":\"10.4018/jcmam.2012070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the event of an accident or emergency, a victim’s medical information such as blood type, prescribed drugs, and other pertinent medical history is critical to Emergency Medical Technicians (EMTs) so that the correct treatment can be provided to the victim as quickly as possible. Victims of car accidents, heart attacks, etc., are not always able to answer simple but crucial medical questions. Treatment time is critical in an emergency situation and the EMT must quickly obtain correct medical information to provide treatment until the victim is stabilized or admitted to the hospital. With an unconscious patient, the EMT must perform a number of tests to obtain these details. A Radio Frequency Identification (RFID) tag encoded with this information could provide this information quickly and correctly, while saving the time and expense of the tests to answer these questions. The ability of the RFID tag to communicate through objects can minimize the movement of the victim to obtain the necessary information. This paper presents a standardized format for encoding (storing) this information in the RFID tag for use in the United States. The use of data compression techniques are explored to maximize the amount of information able to be stored in the RFID tag. Privacy and security issues with this application are discussed and a potential solution is presented. Using Radio Frequency Identification (RFID) Tags to Store Medical Information Needed by First Responders: Data Format, Privacy, and Security\",\"PeriodicalId\":162417,\"journal\":{\"name\":\"Int. J. Comput. Model. Algorithms Medicine\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Model. Algorithms Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jcmam.2012070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Model. Algorithms Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jcmam.2012070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Radio Frequency Identification (RFID) Tags to Store Medical Information Needed by First Responders: Data Format, Privacy, and Security
In the event of an accident or emergency, a victim’s medical information such as blood type, prescribed drugs, and other pertinent medical history is critical to Emergency Medical Technicians (EMTs) so that the correct treatment can be provided to the victim as quickly as possible. Victims of car accidents, heart attacks, etc., are not always able to answer simple but crucial medical questions. Treatment time is critical in an emergency situation and the EMT must quickly obtain correct medical information to provide treatment until the victim is stabilized or admitted to the hospital. With an unconscious patient, the EMT must perform a number of tests to obtain these details. A Radio Frequency Identification (RFID) tag encoded with this information could provide this information quickly and correctly, while saving the time and expense of the tests to answer these questions. The ability of the RFID tag to communicate through objects can minimize the movement of the victim to obtain the necessary information. This paper presents a standardized format for encoding (storing) this information in the RFID tag for use in the United States. The use of data compression techniques are explored to maximize the amount of information able to be stored in the RFID tag. Privacy and security issues with this application are discussed and a potential solution is presented. Using Radio Frequency Identification (RFID) Tags to Store Medical Information Needed by First Responders: Data Format, Privacy, and Security