圣荷叶天然材料合成超级电容器用活性炭电极的制备

Tanachai Ponken, Kanoknan Yaowanit, Kanyaphat Weluwanarak, Apisit Keacharoen, Wichaid Ponhan
{"title":"圣荷叶天然材料合成超级电容器用活性炭电极的制备","authors":"Tanachai Ponken, Kanoknan Yaowanit, Kanyaphat Weluwanarak, Apisit Keacharoen, Wichaid Ponhan","doi":"10.55674/jmsae.v11i3.247369","DOIUrl":null,"url":null,"abstract":"Supercapacitor has been the interesting issue in electric energy storage system. Supercapacitors carbon electrode was synthesized from a sacred lotus leaf. The none activated carbon sacred lotus leaf powder (CSLL) and the carbon sacred lotus leaf were mixed with potassium hydroxide (KOH) in the ratio of 1 : 1, 1 : 2, and 1 : 3 which were called CSLL, CSLL-1 : 1, CSLL-1 : 2 and CSLL-1 : 3, respectively. The structural, morphological properties and element component were analyzed with x-ray diffraction (XRD) technique, the field emission scanning electron microscope (FESEM) and energy dispersive x-ray spectroscopy (EDX), respectively. Electrical properties were measured by cyclic voltammetry (CV) and charge–discharge techniques. JCPDS 01-072-2091 data file confirmed the carbon-like (110) plan at 2 theta of 29.43° CSLL-1 : 1 and CSLL-1 : 2 showed high crystalline sizes. Morphology of CSLL-1 : 1 and CSLL-1 : 2 samples exhibited corrosion of surface clearly nevertheless carbon cluster adhered continuously on surface affect to higher the surface area. Carbon element of CSLL, CSLL-1 : 1 and CSLL-1 : 2 samples were obtained as high as of 74.50, 79.30 and 76 % by atomic, respectively which it was suitable characteristic of activated carbon electrode. The highest specific capacitance of CSLL-1 : 2 electrodes displayed approximately 40.85 F g-1 at the scan rate of 20 mVs-1. Moreover, the charge–discharge time of CSLL-1 : 1 and CSLL-1 : 2 electrodes showed the long discharge time more than the discharge time of CSLL-1 : 3 and CSLL electrodes. The performances of electrode demonstrated with charge-discharge of 1,500 and 1,000 cycles found that the CSLL-1 : 1 and CSLL-1 : 2 electrodes exhibited high stability. The suitable conditions ranges depicted between from the CSLL-1 : 1 to CSLL-1 : 2 ratios; furthermore, a sacred lotus leaf can fabricate the carbon electrode for supercapacitor.","PeriodicalId":239298,"journal":{"name":"Journal of Materials Science and Applied Energy","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of activated carbon electrode synthesized from sacred lotus leaf natural materials for supercapacitors\",\"authors\":\"Tanachai Ponken, Kanoknan Yaowanit, Kanyaphat Weluwanarak, Apisit Keacharoen, Wichaid Ponhan\",\"doi\":\"10.55674/jmsae.v11i3.247369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supercapacitor has been the interesting issue in electric energy storage system. Supercapacitors carbon electrode was synthesized from a sacred lotus leaf. The none activated carbon sacred lotus leaf powder (CSLL) and the carbon sacred lotus leaf were mixed with potassium hydroxide (KOH) in the ratio of 1 : 1, 1 : 2, and 1 : 3 which were called CSLL, CSLL-1 : 1, CSLL-1 : 2 and CSLL-1 : 3, respectively. The structural, morphological properties and element component were analyzed with x-ray diffraction (XRD) technique, the field emission scanning electron microscope (FESEM) and energy dispersive x-ray spectroscopy (EDX), respectively. Electrical properties were measured by cyclic voltammetry (CV) and charge–discharge techniques. JCPDS 01-072-2091 data file confirmed the carbon-like (110) plan at 2 theta of 29.43° CSLL-1 : 1 and CSLL-1 : 2 showed high crystalline sizes. Morphology of CSLL-1 : 1 and CSLL-1 : 2 samples exhibited corrosion of surface clearly nevertheless carbon cluster adhered continuously on surface affect to higher the surface area. Carbon element of CSLL, CSLL-1 : 1 and CSLL-1 : 2 samples were obtained as high as of 74.50, 79.30 and 76 % by atomic, respectively which it was suitable characteristic of activated carbon electrode. The highest specific capacitance of CSLL-1 : 2 electrodes displayed approximately 40.85 F g-1 at the scan rate of 20 mVs-1. Moreover, the charge–discharge time of CSLL-1 : 1 and CSLL-1 : 2 electrodes showed the long discharge time more than the discharge time of CSLL-1 : 3 and CSLL electrodes. The performances of electrode demonstrated with charge-discharge of 1,500 and 1,000 cycles found that the CSLL-1 : 1 and CSLL-1 : 2 electrodes exhibited high stability. The suitable conditions ranges depicted between from the CSLL-1 : 1 to CSLL-1 : 2 ratios; furthermore, a sacred lotus leaf can fabricate the carbon electrode for supercapacitor.\",\"PeriodicalId\":239298,\"journal\":{\"name\":\"Journal of Materials Science and Applied Energy\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science and Applied Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55674/jmsae.v11i3.247369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science and Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55674/jmsae.v11i3.247369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器一直是电力储能系统研究的热点问题。以圣荷叶为原料合成了超级电容器碳电极。将无活性炭圣荷叶粉(CSLL)和炭圣荷叶粉与氢氧化钾(KOH)按1:1、1:1、1:3的比例混合,分别称为CSLL、CSLL- 1:1、CSLL- 1:1、CSLL- 1:1和CSLL- 1:3。分别用x射线衍射(XRD)、场发射扫描电镜(FESEM)和能量色散x射线能谱(EDX)分析了材料的结构、形态和元素成分。电学性能采用循环伏安法和充放电技术进行测定。JCPDS 01-072-2091数据文件证实,在29.43°2 θ位置的csll - 1:1和csll - 1:1处的类碳(110)平面显示出高晶粒尺寸。csll - 1:1和csll - 1:2样品的形貌表现出明显的表面腐蚀现象,但碳团簇在表面的持续粘附对表面积的影响较大。CSLL、CSLL- 1:1和CSLL- 1:1样品的碳元素原子含量分别高达74.50、79.30和76%,符合活性炭电极的特性。在扫描速率为20 mVs-1时,csll - 1:2电极的最高比电容约为40.85 F -1。CSLL- 1:1和CSLL- 1:2电极的充放电时间比CSLL- 1:3和CSLL电极的放电时间更长。在1500和1000次充放电循环下,csll - 1:1和csll - 1:2电极表现出较高的稳定性。合适的条件范围从csll - 1:1到csll - 1:1之间;此外,神圣的荷叶可以用来制作超级电容器的碳电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of activated carbon electrode synthesized from sacred lotus leaf natural materials for supercapacitors
Supercapacitor has been the interesting issue in electric energy storage system. Supercapacitors carbon electrode was synthesized from a sacred lotus leaf. The none activated carbon sacred lotus leaf powder (CSLL) and the carbon sacred lotus leaf were mixed with potassium hydroxide (KOH) in the ratio of 1 : 1, 1 : 2, and 1 : 3 which were called CSLL, CSLL-1 : 1, CSLL-1 : 2 and CSLL-1 : 3, respectively. The structural, morphological properties and element component were analyzed with x-ray diffraction (XRD) technique, the field emission scanning electron microscope (FESEM) and energy dispersive x-ray spectroscopy (EDX), respectively. Electrical properties were measured by cyclic voltammetry (CV) and charge–discharge techniques. JCPDS 01-072-2091 data file confirmed the carbon-like (110) plan at 2 theta of 29.43° CSLL-1 : 1 and CSLL-1 : 2 showed high crystalline sizes. Morphology of CSLL-1 : 1 and CSLL-1 : 2 samples exhibited corrosion of surface clearly nevertheless carbon cluster adhered continuously on surface affect to higher the surface area. Carbon element of CSLL, CSLL-1 : 1 and CSLL-1 : 2 samples were obtained as high as of 74.50, 79.30 and 76 % by atomic, respectively which it was suitable characteristic of activated carbon electrode. The highest specific capacitance of CSLL-1 : 2 electrodes displayed approximately 40.85 F g-1 at the scan rate of 20 mVs-1. Moreover, the charge–discharge time of CSLL-1 : 1 and CSLL-1 : 2 electrodes showed the long discharge time more than the discharge time of CSLL-1 : 3 and CSLL electrodes. The performances of electrode demonstrated with charge-discharge of 1,500 and 1,000 cycles found that the CSLL-1 : 1 and CSLL-1 : 2 electrodes exhibited high stability. The suitable conditions ranges depicted between from the CSLL-1 : 1 to CSLL-1 : 2 ratios; furthermore, a sacred lotus leaf can fabricate the carbon electrode for supercapacitor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信