更准确的学校排名预测的附加价值

F. Schiltz, P. Sestito, T. Agasisti, Kristof De Witte
{"title":"更准确的学校排名预测的附加价值","authors":"F. Schiltz, P. Sestito, T. Agasisti, Kristof De Witte","doi":"10.2139/ssrn.3432393","DOIUrl":null,"url":null,"abstract":"School rankings based on value-added (VA) estimates are subject to prediction errors, since VA is defined as the difference between predicted and actual performance. We introduce the use of random forest (RF), rooted in the machine learning literature, as a more flexible approach to minimize prediction errors and to improve school rankings. Monte Carlo simulations demonstrate the advantages of this approach. Applying the proposed method to Italian middle school data indicates that school rankings are sensitive to prediction errors, even when extensive controls are added. RF estimates provide a low-cost way to increase the accuracy of predictions, resulting in more informative rankings, and more impact of policy decisions.","PeriodicalId":197240,"journal":{"name":"Educational Organization eJournal","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"The Added Value of More Accurate Predictions for School Rankings\",\"authors\":\"F. Schiltz, P. Sestito, T. Agasisti, Kristof De Witte\",\"doi\":\"10.2139/ssrn.3432393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"School rankings based on value-added (VA) estimates are subject to prediction errors, since VA is defined as the difference between predicted and actual performance. We introduce the use of random forest (RF), rooted in the machine learning literature, as a more flexible approach to minimize prediction errors and to improve school rankings. Monte Carlo simulations demonstrate the advantages of this approach. Applying the proposed method to Italian middle school data indicates that school rankings are sensitive to prediction errors, even when extensive controls are added. RF estimates provide a low-cost way to increase the accuracy of predictions, resulting in more informative rankings, and more impact of policy decisions.\",\"PeriodicalId\":197240,\"journal\":{\"name\":\"Educational Organization eJournal\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational Organization eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3432393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Organization eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3432393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

根据附加值(VA)估算的学校排名可能存在预测误差,因为VA的定义是预测成绩与实际成绩之间的差异。我们介绍了随机森林(RF)的使用,它植根于机器学习文献,作为一种更灵活的方法来最大限度地减少预测误差并提高学校排名。蒙特卡罗仿真证明了这种方法的优点。将提出的方法应用于意大利中学数据表明,学校排名对预测误差很敏感,即使添加了广泛的控制。射频估计提供了一种低成本的方法来提高预测的准确性,从而产生更有信息量的排名,并对政策决策产生更大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Added Value of More Accurate Predictions for School Rankings
School rankings based on value-added (VA) estimates are subject to prediction errors, since VA is defined as the difference between predicted and actual performance. We introduce the use of random forest (RF), rooted in the machine learning literature, as a more flexible approach to minimize prediction errors and to improve school rankings. Monte Carlo simulations demonstrate the advantages of this approach. Applying the proposed method to Italian middle school data indicates that school rankings are sensitive to prediction errors, even when extensive controls are added. RF estimates provide a low-cost way to increase the accuracy of predictions, resulting in more informative rankings, and more impact of policy decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信