一类比率型有限总体方差估计量的算术平均估计量

M. A. Yunusa, Ahmed Audu, J. Muili
{"title":"一类比率型有限总体方差估计量的算术平均估计量","authors":"M. A. Yunusa, Ahmed Audu, J. Muili","doi":"10.13005/ojps07.02.03","DOIUrl":null,"url":null,"abstract":"For many years, one of the difficult components of sampling theory has been the estimation of population characteristics, especially variance. The estimation of variability is very essential in many fields (Chemistry, Biology, Mathematics, and so on) to know how one quantity varies with respect to another quantity. This paper proposes arithmetic estimators of a group of ratio estimators for populations with finite variance. Using a Taylor series technique, the bias and MSE of the proposed estimators are determined up to the first order of approximation together with the efficiency conditions over existing estimators. The effectiveness of the proposed estimators in comparison to the current estimators is evaluated using a real-world data set. The empirical findings demonstrate that the suggested estimators outperform the current estimators taken into account in the study. Hence, these suggested estimators are recommended for use in real life scenario.","PeriodicalId":299805,"journal":{"name":"Oriental Journal of Physical Sciences","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Arithmetic Mean Estimators of a Family of Estimators of Finite Population Variance of Ratio Type\",\"authors\":\"M. A. Yunusa, Ahmed Audu, J. Muili\",\"doi\":\"10.13005/ojps07.02.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many years, one of the difficult components of sampling theory has been the estimation of population characteristics, especially variance. The estimation of variability is very essential in many fields (Chemistry, Biology, Mathematics, and so on) to know how one quantity varies with respect to another quantity. This paper proposes arithmetic estimators of a group of ratio estimators for populations with finite variance. Using a Taylor series technique, the bias and MSE of the proposed estimators are determined up to the first order of approximation together with the efficiency conditions over existing estimators. The effectiveness of the proposed estimators in comparison to the current estimators is evaluated using a real-world data set. The empirical findings demonstrate that the suggested estimators outperform the current estimators taken into account in the study. Hence, these suggested estimators are recommended for use in real life scenario.\",\"PeriodicalId\":299805,\"journal\":{\"name\":\"Oriental Journal of Physical Sciences\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oriental Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/ojps07.02.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojps07.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,抽样理论的难点之一是估计总体特征,特别是方差。在许多领域(化学、生物学、数学等),估计可变性对于了解一个量相对于另一个量的变化是非常必要的。本文提出了有限方差总体的一组比率估计的算术估计。利用泰勒级数技术,确定了所提估计量的偏差和均方差,直至逼近一阶,并确定了现有估计量的效率条件。与当前估计器相比,提出的估计器的有效性使用真实世界的数据集进行评估。实证结果表明,建议的估计量优于研究中考虑的当前估计量。因此,建议在实际场景中使用这些建议的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Arithmetic Mean Estimators of a Family of Estimators of Finite Population Variance of Ratio Type
For many years, one of the difficult components of sampling theory has been the estimation of population characteristics, especially variance. The estimation of variability is very essential in many fields (Chemistry, Biology, Mathematics, and so on) to know how one quantity varies with respect to another quantity. This paper proposes arithmetic estimators of a group of ratio estimators for populations with finite variance. Using a Taylor series technique, the bias and MSE of the proposed estimators are determined up to the first order of approximation together with the efficiency conditions over existing estimators. The effectiveness of the proposed estimators in comparison to the current estimators is evaluated using a real-world data set. The empirical findings demonstrate that the suggested estimators outperform the current estimators taken into account in the study. Hence, these suggested estimators are recommended for use in real life scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信