基于概率神经网络和独立分量分析的无线自组织传感器网络能量高效定位

S. Rajaee, S. Almodarresi, M. Sadeghi, M. Aghabozorgi
{"title":"基于概率神经网络和独立分量分析的无线自组织传感器网络能量高效定位","authors":"S. Rajaee, S. Almodarresi, M. Sadeghi, M. Aghabozorgi","doi":"10.1109/ISTEL.2008.4651329","DOIUrl":null,"url":null,"abstract":"Recently, wireless ad-hoc sensor networks due to their abilities are being rapidly developed to collect data across the area of deployment. To describe the collected data and facilitate communication protocols, it is necessary to identify the location of each sensor. Usually, localization algorithms use trilateration or multilateration based on range measurements obtained from RSSI, TOA, TDOA and AoA. This paper addresses localization techniques in ad-hoc wireless networks, where anchors and unknown nodes are randomly positioned in a uniform distribution in a squared area. Here , we first review some existing sensor localization methods and then propose a localization method that with use of probabilistic neural network (PNN), estimates the locations of unknown nodes, Then we reduce calculations and energy consumption with the help of independent component analysis (ICA) by removing some unnecessary anchor nodes. A PNN can estimate the location of unknown nodes, properly and with the help of ICA we can easily reduce calculations and therefore energy consumption by about 43 percent in dense networks.","PeriodicalId":133602,"journal":{"name":"2008 International Symposium on Telecommunications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Energy efficient localization in wireless ad-hoc sensor networks using probabilistic neural network and Independent Component Analysis\",\"authors\":\"S. Rajaee, S. Almodarresi, M. Sadeghi, M. Aghabozorgi\",\"doi\":\"10.1109/ISTEL.2008.4651329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, wireless ad-hoc sensor networks due to their abilities are being rapidly developed to collect data across the area of deployment. To describe the collected data and facilitate communication protocols, it is necessary to identify the location of each sensor. Usually, localization algorithms use trilateration or multilateration based on range measurements obtained from RSSI, TOA, TDOA and AoA. This paper addresses localization techniques in ad-hoc wireless networks, where anchors and unknown nodes are randomly positioned in a uniform distribution in a squared area. Here , we first review some existing sensor localization methods and then propose a localization method that with use of probabilistic neural network (PNN), estimates the locations of unknown nodes, Then we reduce calculations and energy consumption with the help of independent component analysis (ICA) by removing some unnecessary anchor nodes. A PNN can estimate the location of unknown nodes, properly and with the help of ICA we can easily reduce calculations and therefore energy consumption by about 43 percent in dense networks.\",\"PeriodicalId\":133602,\"journal\":{\"name\":\"2008 International Symposium on Telecommunications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTEL.2008.4651329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2008.4651329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

最近,无线自组织传感器网络由于其能力正在迅速发展,以收集整个部署区域的数据。为了描述收集到的数据和方便通信协议,有必要确定每个传感器的位置。定位算法通常采用基于RSSI、TOA、TDOA和AoA得到的距离测量值的三边或多重定位。本文研究了自组织无线网络中的定位技术,其中锚点和未知节点随机分布在正方形区域的均匀分布中。在回顾现有传感器定位方法的基础上,提出了一种利用概率神经网络(PNN)估计未知节点位置的定位方法,然后利用独立分量分析(ICA)去除一些不必要的锚节点,从而减少计算量和能耗。PNN可以正确地估计未知节点的位置,并且在ICA的帮助下,我们可以很容易地减少计算,因此在密集网络中可以减少大约43%的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy efficient localization in wireless ad-hoc sensor networks using probabilistic neural network and Independent Component Analysis
Recently, wireless ad-hoc sensor networks due to their abilities are being rapidly developed to collect data across the area of deployment. To describe the collected data and facilitate communication protocols, it is necessary to identify the location of each sensor. Usually, localization algorithms use trilateration or multilateration based on range measurements obtained from RSSI, TOA, TDOA and AoA. This paper addresses localization techniques in ad-hoc wireless networks, where anchors and unknown nodes are randomly positioned in a uniform distribution in a squared area. Here , we first review some existing sensor localization methods and then propose a localization method that with use of probabilistic neural network (PNN), estimates the locations of unknown nodes, Then we reduce calculations and energy consumption with the help of independent component analysis (ICA) by removing some unnecessary anchor nodes. A PNN can estimate the location of unknown nodes, properly and with the help of ICA we can easily reduce calculations and therefore energy consumption by about 43 percent in dense networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信