基于二阶统计量的RLS盲信道识别方法

T. Kimura, H. Sasaki, H. Ochi
{"title":"基于二阶统计量的RLS盲信道识别方法","authors":"T. Kimura, H. Sasaki, H. Ochi","doi":"10.1109/SPAWC.1999.783023","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new blind identification algorithm which is based on second order statistics and exploits a single-input double-output (SIDO) model. It is suitable for a real-time processing system because of lower operation and high-speed convergence. The proposed blind identification algorithm is superior to conventional algorithms in view of simple structure and the uniqueness of solution. We also verify its efficiency by computer simulation.","PeriodicalId":365086,"journal":{"name":"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind channel identification using RLS method based on second-order statistics\",\"authors\":\"T. Kimura, H. Sasaki, H. Ochi\",\"doi\":\"10.1109/SPAWC.1999.783023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new blind identification algorithm which is based on second order statistics and exploits a single-input double-output (SIDO) model. It is suitable for a real-time processing system because of lower operation and high-speed convergence. The proposed blind identification algorithm is superior to conventional algorithms in view of simple structure and the uniqueness of solution. We also verify its efficiency by computer simulation.\",\"PeriodicalId\":365086,\"journal\":{\"name\":\"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.1999.783023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.1999.783023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于二阶统计量的单输入双输出(SIDO)模型的盲识别算法。该算法运算成本低,收敛速度快,适用于实时处理系统。该算法结构简单,解的唯一性优于传统的盲识别算法。通过计算机仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind channel identification using RLS method based on second-order statistics
In this paper, we propose a new blind identification algorithm which is based on second order statistics and exploits a single-input double-output (SIDO) model. It is suitable for a real-time processing system because of lower operation and high-speed convergence. The proposed blind identification algorithm is superior to conventional algorithms in view of simple structure and the uniqueness of solution. We also verify its efficiency by computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信