气相焊接过程中冷凝物厚度对衬底性能的影响

B. Illés
{"title":"气相焊接过程中冷凝物厚度对衬底性能的影响","authors":"B. Illés","doi":"10.1109/SIITME.2015.7342298","DOIUrl":null,"url":null,"abstract":"In this paper, the average and the range of the condensate layer thickness was investigated in the function of different substrate properties with numerical simulations of Vapour Phase Soldering (VPS). The condensate layer thickness is the main influencing factor during the heat transfer of the VPS process. The phase change on the substrate and the transfer mechanisms in the condensate layer were included in a three-dimensional numerical model. Stationary and saturated vapour conditions were applied as boundary conditions, in order to separate the effects of the substrate properties from the effects of the realistic unsteady and nonhomogeneous vapour conditions. Three different substrate materials was studied: FR4, 94% Alumina and Insulated Metal Substrate (IMS). The effect of the substrate shapes and thicknesses was also studied. It was found that the thermal properties of the substrate has considerable effects on the formation of the condensate layer and consequently on the heat transfer of the VPS. It was also proven that shape of the substrates has non-ignorable effects since it affects the movement of the condensate on the surface of the substrate.","PeriodicalId":174623,"journal":{"name":"2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dependence of condensate thickness on the substrate properties during Vapour Phase Soldering\",\"authors\":\"B. Illés\",\"doi\":\"10.1109/SIITME.2015.7342298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the average and the range of the condensate layer thickness was investigated in the function of different substrate properties with numerical simulations of Vapour Phase Soldering (VPS). The condensate layer thickness is the main influencing factor during the heat transfer of the VPS process. The phase change on the substrate and the transfer mechanisms in the condensate layer were included in a three-dimensional numerical model. Stationary and saturated vapour conditions were applied as boundary conditions, in order to separate the effects of the substrate properties from the effects of the realistic unsteady and nonhomogeneous vapour conditions. Three different substrate materials was studied: FR4, 94% Alumina and Insulated Metal Substrate (IMS). The effect of the substrate shapes and thicknesses was also studied. It was found that the thermal properties of the substrate has considerable effects on the formation of the condensate layer and consequently on the heat transfer of the VPS. It was also proven that shape of the substrates has non-ignorable effects since it affects the movement of the condensate on the surface of the substrate.\",\"PeriodicalId\":174623,\"journal\":{\"name\":\"2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIITME.2015.7342298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIITME.2015.7342298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过气相焊接(VPS)的数值模拟,研究了冷凝层厚度的平均值和范围随衬底性能的变化规律。凝结水层厚度是影响VPS过程传热的主要因素。在三维数值模型中考虑了衬底上的相变和凝结水层内的传递机理。为了将基材性质的影响与实际的非定常和非均匀蒸汽条件的影响分离开来,采用了静止和饱和蒸汽条件作为边界条件。研究了三种不同的衬底材料:FR4、94%氧化铝和绝缘金属衬底(IMS)。研究了衬底形状和厚度的影响。研究发现,衬底的热性能对冷凝层的形成和VPS的传热有相当大的影响。还证明了衬底的形状具有不可忽视的影响,因为它影响衬底表面凝聚物的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dependence of condensate thickness on the substrate properties during Vapour Phase Soldering
In this paper, the average and the range of the condensate layer thickness was investigated in the function of different substrate properties with numerical simulations of Vapour Phase Soldering (VPS). The condensate layer thickness is the main influencing factor during the heat transfer of the VPS process. The phase change on the substrate and the transfer mechanisms in the condensate layer were included in a three-dimensional numerical model. Stationary and saturated vapour conditions were applied as boundary conditions, in order to separate the effects of the substrate properties from the effects of the realistic unsteady and nonhomogeneous vapour conditions. Three different substrate materials was studied: FR4, 94% Alumina and Insulated Metal Substrate (IMS). The effect of the substrate shapes and thicknesses was also studied. It was found that the thermal properties of the substrate has considerable effects on the formation of the condensate layer and consequently on the heat transfer of the VPS. It was also proven that shape of the substrates has non-ignorable effects since it affects the movement of the condensate on the surface of the substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信