基于粒子群算法的感应电机故障识别

S.A. Etny, P.P. Acarlney, B. Zahawi, D. Giaouris
{"title":"基于粒子群算法的感应电机故障识别","authors":"S.A. Etny, P.P. Acarlney, B. Zahawi, D. Giaouris","doi":"10.1109/PEDES.2006.344310","DOIUrl":null,"url":null,"abstract":"The principles of a new technique using particle swarm algorithms for condition monitoring of the stator and rotor circuits of an induction machine is described in this paper. Using terminal voltage and current data, the stochastic optimization technique is able to indicate the presence of a fault and provide information about the location and nature of the fault. The technique is demonstrated using experimental data from a laboratory machine with both stator and rotor winding faults.","PeriodicalId":262597,"journal":{"name":"2006 International Conference on Power Electronic, Drives and Energy Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Induction Machine Fault Identification using Particle Swarm Algorithms\",\"authors\":\"S.A. Etny, P.P. Acarlney, B. Zahawi, D. Giaouris\",\"doi\":\"10.1109/PEDES.2006.344310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principles of a new technique using particle swarm algorithms for condition monitoring of the stator and rotor circuits of an induction machine is described in this paper. Using terminal voltage and current data, the stochastic optimization technique is able to indicate the presence of a fault and provide information about the location and nature of the fault. The technique is demonstrated using experimental data from a laboratory machine with both stator and rotor winding faults.\",\"PeriodicalId\":262597,\"journal\":{\"name\":\"2006 International Conference on Power Electronic, Drives and Energy Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Power Electronic, Drives and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDES.2006.344310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Power Electronic, Drives and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDES.2006.344310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了利用粒子群算法对异步电机定子和转子电路进行状态监测的新技术原理。利用终端电压和电流数据,随机优化技术能够指示故障的存在,并提供有关故障位置和性质的信息。用一台定子和转子绕组均存在故障的实验机的实验数据对该技术进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induction Machine Fault Identification using Particle Swarm Algorithms
The principles of a new technique using particle swarm algorithms for condition monitoring of the stator and rotor circuits of an induction machine is described in this paper. Using terminal voltage and current data, the stochastic optimization technique is able to indicate the presence of a fault and provide information about the location and nature of the fault. The technique is demonstrated using experimental data from a laboratory machine with both stator and rotor winding faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信