Mohd Syafiq Mispan, Basel Halak, Zufu Chen, Mark Zwolinski
{"title":"TCO-PUF:阈下物理不可克隆函数","authors":"Mohd Syafiq Mispan, Basel Halak, Zufu Chen, Mark Zwolinski","doi":"10.1109/PRIME.2015.7251345","DOIUrl":null,"url":null,"abstract":"A Physical Unclonable Function (PUF) is a promising technology towards comprehensive security protection for integrated circuit applications. It provides a secure method of hardware identification and authentication by exploiting inherent manufacturing process variations to generate a unique response for each device. Subthreshold Current Array PUFs, which are based on the non-linearity of currents and voltages in MOSFETs in the subthreshold region, provide higher security against machine learning-based attacks compared with delay-based PUFs. However, their implementation is not practical due to the low output voltages generated from transistor arrays. In this paper, a novel architecture for a PUF, called the “Two Chooses One” PUF or TCO-PUF, is proposed to improve the output voltage ranges. The proposed PUF shows excellent quality metrics. The average inter-chip Hamming distance is 50.23%. The reliability over the temperature and ±10% supply voltage fluctuations is 91.58%. In terms of security, on average TCO-PUF shows higher security compared to delay-based PUFs and existing designs of Subthreshold Current Array PUFs against machine learning attacks.","PeriodicalId":237786,"journal":{"name":"2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"TCO-PUF: A subthreshold physical unclonable function\",\"authors\":\"Mohd Syafiq Mispan, Basel Halak, Zufu Chen, Mark Zwolinski\",\"doi\":\"10.1109/PRIME.2015.7251345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Physical Unclonable Function (PUF) is a promising technology towards comprehensive security protection for integrated circuit applications. It provides a secure method of hardware identification and authentication by exploiting inherent manufacturing process variations to generate a unique response for each device. Subthreshold Current Array PUFs, which are based on the non-linearity of currents and voltages in MOSFETs in the subthreshold region, provide higher security against machine learning-based attacks compared with delay-based PUFs. However, their implementation is not practical due to the low output voltages generated from transistor arrays. In this paper, a novel architecture for a PUF, called the “Two Chooses One” PUF or TCO-PUF, is proposed to improve the output voltage ranges. The proposed PUF shows excellent quality metrics. The average inter-chip Hamming distance is 50.23%. The reliability over the temperature and ±10% supply voltage fluctuations is 91.58%. In terms of security, on average TCO-PUF shows higher security compared to delay-based PUFs and existing designs of Subthreshold Current Array PUFs against machine learning attacks.\",\"PeriodicalId\":237786,\"journal\":{\"name\":\"2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIME.2015.7251345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIME.2015.7251345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TCO-PUF: A subthreshold physical unclonable function
A Physical Unclonable Function (PUF) is a promising technology towards comprehensive security protection for integrated circuit applications. It provides a secure method of hardware identification and authentication by exploiting inherent manufacturing process variations to generate a unique response for each device. Subthreshold Current Array PUFs, which are based on the non-linearity of currents and voltages in MOSFETs in the subthreshold region, provide higher security against machine learning-based attacks compared with delay-based PUFs. However, their implementation is not practical due to the low output voltages generated from transistor arrays. In this paper, a novel architecture for a PUF, called the “Two Chooses One” PUF or TCO-PUF, is proposed to improve the output voltage ranges. The proposed PUF shows excellent quality metrics. The average inter-chip Hamming distance is 50.23%. The reliability over the temperature and ±10% supply voltage fluctuations is 91.58%. In terms of security, on average TCO-PUF shows higher security compared to delay-based PUFs and existing designs of Subthreshold Current Array PUFs against machine learning attacks.