基于自适应局部超平面算法的蛋白质折叠识别

V. Kecman, Tao Yang
{"title":"基于自适应局部超平面算法的蛋白质折叠识别","authors":"V. Kecman, Tao Yang","doi":"10.1109/CIBCB.2009.4925710","DOIUrl":null,"url":null,"abstract":"Protein fold recognition task is important for understanding the biological functions of proteins. The adaptive local hyperplane (ALH) algorithm has been shown to perform better than many other renown classifiers including support vector machines, K-nearest neighbor, linear discriminant analysis, K-local hyperplane distance nearest neighbor algorithms and decision trees on a variety of data sets. In this paper, we apply the ALH algorithm to well-known data sets on protein fold recognition task without sequence similarity from Ding and Dubchak (2001). The results obtained demonstrate that the ALH algorithm outperforms all the seven other very well known and established benchmarking classifiers applied to same data sets.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Protein fold recognition with adaptive local hyperplane algorithm\",\"authors\":\"V. Kecman, Tao Yang\",\"doi\":\"10.1109/CIBCB.2009.4925710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein fold recognition task is important for understanding the biological functions of proteins. The adaptive local hyperplane (ALH) algorithm has been shown to perform better than many other renown classifiers including support vector machines, K-nearest neighbor, linear discriminant analysis, K-local hyperplane distance nearest neighbor algorithms and decision trees on a variety of data sets. In this paper, we apply the ALH algorithm to well-known data sets on protein fold recognition task without sequence similarity from Ding and Dubchak (2001). The results obtained demonstrate that the ALH algorithm outperforms all the seven other very well known and established benchmarking classifiers applied to same data sets.\",\"PeriodicalId\":162052,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2009.4925710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

蛋白质折叠识别对于了解蛋白质的生物学功能具有重要意义。自适应局部超平面(ALH)算法在各种数据集上的表现优于许多其他著名的分类器,包括支持向量机、k近邻、线性判别分析、k局部超平面距离近邻算法和决策树。在本文中,我们将ALH算法应用于Ding和Dubchak(2001)的已知数据集,用于无序列相似性的蛋白质折叠识别任务。得到的结果表明,ALH算法优于应用于相同数据集的所有其他七个非常知名和已建立的基准分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein fold recognition with adaptive local hyperplane algorithm
Protein fold recognition task is important for understanding the biological functions of proteins. The adaptive local hyperplane (ALH) algorithm has been shown to perform better than many other renown classifiers including support vector machines, K-nearest neighbor, linear discriminant analysis, K-local hyperplane distance nearest neighbor algorithms and decision trees on a variety of data sets. In this paper, we apply the ALH algorithm to well-known data sets on protein fold recognition task without sequence similarity from Ding and Dubchak (2001). The results obtained demonstrate that the ALH algorithm outperforms all the seven other very well known and established benchmarking classifiers applied to same data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信