Björn Gernert, S. Schildt, L. Wolf, B. Zeise, Paul Fritsche, Bernardo Wagner, Maksims Fiosins, Ramin Safar Manesh, J. Müller
{"title":"灾害情景下自主团队探索的跨学科方法","authors":"Björn Gernert, S. Schildt, L. Wolf, B. Zeise, Paul Fritsche, Bernardo Wagner, Maksims Fiosins, Ramin Safar Manesh, J. Müller","doi":"10.1109/SSRR.2014.7017655","DOIUrl":null,"url":null,"abstract":"Autonomous robots can be used to perform reconnaissance missions in disaster scenarios when the safety of humans cannot be guaranteed. We developed an interdisciplinary approach to autonomous team-based exploration in such settings. The introduced system architecture consists of robust communication and reactive task allocation, built upon a research robot platform. A team of robots autonomously executes exploration tasks deploying a long-term sensor network. All robots and sensors are linked through the so-called distributed common information model (dCIM), which is the global knowledge base of our system. It enables the robots to share a unified environment model and to perform dynamic task scheduling. All key soft-and hardware elements presented in this paper have been prototypically implemented and tested.","PeriodicalId":267630,"journal":{"name":"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An interdisciplinary approach to autonomous team-based exploration in disaster scenarios\",\"authors\":\"Björn Gernert, S. Schildt, L. Wolf, B. Zeise, Paul Fritsche, Bernardo Wagner, Maksims Fiosins, Ramin Safar Manesh, J. Müller\",\"doi\":\"10.1109/SSRR.2014.7017655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous robots can be used to perform reconnaissance missions in disaster scenarios when the safety of humans cannot be guaranteed. We developed an interdisciplinary approach to autonomous team-based exploration in such settings. The introduced system architecture consists of robust communication and reactive task allocation, built upon a research robot platform. A team of robots autonomously executes exploration tasks deploying a long-term sensor network. All robots and sensors are linked through the so-called distributed common information model (dCIM), which is the global knowledge base of our system. It enables the robots to share a unified environment model and to perform dynamic task scheduling. All key soft-and hardware elements presented in this paper have been prototypically implemented and tested.\",\"PeriodicalId\":267630,\"journal\":{\"name\":\"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR.2014.7017655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2014.7017655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An interdisciplinary approach to autonomous team-based exploration in disaster scenarios
Autonomous robots can be used to perform reconnaissance missions in disaster scenarios when the safety of humans cannot be guaranteed. We developed an interdisciplinary approach to autonomous team-based exploration in such settings. The introduced system architecture consists of robust communication and reactive task allocation, built upon a research robot platform. A team of robots autonomously executes exploration tasks deploying a long-term sensor network. All robots and sensors are linked through the so-called distributed common information model (dCIM), which is the global knowledge base of our system. It enables the robots to share a unified environment model and to perform dynamic task scheduling. All key soft-and hardware elements presented in this paper have been prototypically implemented and tested.