{"title":"应用有限元模型,得到了处理功率、反射和焦直径对铝激光变形的影响","authors":"L. Lazov, I. Draganov","doi":"10.17770/etr2023vol3.7278","DOIUrl":null,"url":null,"abstract":"In this work, a numerical model of laser texturing is considered. A finite element model of a representative sample of pure aluminum was created. The impact of a laser pulse was simulated, assuming a Gaussian volume distribution of the heat flux. Material properties are assumed to be constant and latent heat is accounted for. Results are obtained for the thermal field and the width of the vaporized zone, assuming that the crater is characterized by its maximum width. The numerical model was used to study the influence of pulse power density, reflection, focal diameter and pulse duration. The ablation threshold at different laser pulse durations was determinate. ","PeriodicalId":332103,"journal":{"name":"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLICATION OF A FINITE ELEMENT MODEL TO OBTAIN THE INFLUENCE OF THE TREATMENT’S POWER, REFLECION AND FOCAL DIAMETER IN LASER TEXTURING OF ALUMINUM\",\"authors\":\"L. Lazov, I. Draganov\",\"doi\":\"10.17770/etr2023vol3.7278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a numerical model of laser texturing is considered. A finite element model of a representative sample of pure aluminum was created. The impact of a laser pulse was simulated, assuming a Gaussian volume distribution of the heat flux. Material properties are assumed to be constant and latent heat is accounted for. Results are obtained for the thermal field and the width of the vaporized zone, assuming that the crater is characterized by its maximum width. The numerical model was used to study the influence of pulse power density, reflection, focal diameter and pulse duration. The ablation threshold at different laser pulse durations was determinate. \",\"PeriodicalId\":332103,\"journal\":{\"name\":\"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference\",\"volume\":\"280 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17770/etr2023vol3.7278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17770/etr2023vol3.7278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
APPLICATION OF A FINITE ELEMENT MODEL TO OBTAIN THE INFLUENCE OF THE TREATMENT’S POWER, REFLECION AND FOCAL DIAMETER IN LASER TEXTURING OF ALUMINUM
In this work, a numerical model of laser texturing is considered. A finite element model of a representative sample of pure aluminum was created. The impact of a laser pulse was simulated, assuming a Gaussian volume distribution of the heat flux. Material properties are assumed to be constant and latent heat is accounted for. Results are obtained for the thermal field and the width of the vaporized zone, assuming that the crater is characterized by its maximum width. The numerical model was used to study the influence of pulse power density, reflection, focal diameter and pulse duration. The ablation threshold at different laser pulse durations was determinate.