基于数据同步的护理老年人健康状况特征模式提取

T. Miyano, T. Tsutsui
{"title":"基于数据同步的护理老年人健康状况特征模式提取","authors":"T. Miyano, T. Tsutsui","doi":"10.1109/ITAB.2007.4407367","DOIUrl":null,"url":null,"abstract":"We devised a method for data mining from multivariate data using a network of coupled phase oscillators subject to an analogue of the Kuramoto model for collective synchronization. In our method, the natural frequencies of the phase oscillators are extended to vector quantities to which multivariate data are assigned. The common frequency vectors of partially synchronized groups of phase oscillators are interpreted to be the template vectors representing the major features of the data set. We applied our method to care-needs-certification data in the Japanese public long-term care insurance program, and extracted major patterns in the health status of the elderly needing nursing care and their dependence on the model parameter representing the level of coarse-graining for data clustering.","PeriodicalId":129874,"journal":{"name":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extracting Feature Patterns in the Health Status of Elderly People Needing Nursing Care by Data Synchronization\",\"authors\":\"T. Miyano, T. Tsutsui\",\"doi\":\"10.1109/ITAB.2007.4407367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We devised a method for data mining from multivariate data using a network of coupled phase oscillators subject to an analogue of the Kuramoto model for collective synchronization. In our method, the natural frequencies of the phase oscillators are extended to vector quantities to which multivariate data are assigned. The common frequency vectors of partially synchronized groups of phase oscillators are interpreted to be the template vectors representing the major features of the data set. We applied our method to care-needs-certification data in the Japanese public long-term care insurance program, and extracted major patterns in the health status of the elderly needing nursing care and their dependence on the model parameter representing the level of coarse-graining for data clustering.\",\"PeriodicalId\":129874,\"journal\":{\"name\":\"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITAB.2007.4407367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.2007.4407367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们设计了一种从多元数据中挖掘数据的方法,该方法使用了一个耦合相位振荡器网络,该网络服从于集体同步的Kuramoto模型的模拟。在我们的方法中,相位振荡器的固有频率被扩展为矢量,其中分配了多变量数据。部分同步相位振荡器组的公共频率向量被解释为代表数据集主要特征的模板向量。我们将我们的方法应用于日本公共长期护理保险计划中的护理需求认证数据,提取出需要护理的老年人健康状况的主要模式及其对代表粗粒度水平的模型参数的依赖关系,用于数据聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Feature Patterns in the Health Status of Elderly People Needing Nursing Care by Data Synchronization
We devised a method for data mining from multivariate data using a network of coupled phase oscillators subject to an analogue of the Kuramoto model for collective synchronization. In our method, the natural frequencies of the phase oscillators are extended to vector quantities to which multivariate data are assigned. The common frequency vectors of partially synchronized groups of phase oscillators are interpreted to be the template vectors representing the major features of the data set. We applied our method to care-needs-certification data in the Japanese public long-term care insurance program, and extracted major patterns in the health status of the elderly needing nursing care and their dependence on the model parameter representing the level of coarse-graining for data clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信