器件特性如何影响并行计算的能量延迟度量和能量效率

Phillip Stanley-Marbell
{"title":"器件特性如何影响并行计算的能量延迟度量和能量效率","authors":"Phillip Stanley-Marbell","doi":"10.1145/2818613.2818744","DOIUrl":null,"url":null,"abstract":"Semiconductor device engineers are hard-pressed to relate observed device-level properties of potential CMOS replacements to computation performance. We address this challenge by developing a model linking device properties to algorithm parallelism, total computational work, and degree of voltage and frequency scaling. We then use the model to provide insight into how device properties influence execution time, average power dissipation, and overall energy usage of parallel algorithms executing in the presence of hardware concurrency. The model facilitates studying tradeoffs: It lets researchers formulate joint energy-delay metrics that account for device properties.\n We support our analysis with data from a dozen large digital circuit designs, and we validate the models we present using performance and power measurements of a parallel algorithm executing on a state-of-the-art low-power multicore processor.","PeriodicalId":112226,"journal":{"name":"Power-Aware Computer Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How device properties influence energy-delay metrics and the energy-efficiency of parallel computations\",\"authors\":\"Phillip Stanley-Marbell\",\"doi\":\"10.1145/2818613.2818744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor device engineers are hard-pressed to relate observed device-level properties of potential CMOS replacements to computation performance. We address this challenge by developing a model linking device properties to algorithm parallelism, total computational work, and degree of voltage and frequency scaling. We then use the model to provide insight into how device properties influence execution time, average power dissipation, and overall energy usage of parallel algorithms executing in the presence of hardware concurrency. The model facilitates studying tradeoffs: It lets researchers formulate joint energy-delay metrics that account for device properties.\\n We support our analysis with data from a dozen large digital circuit designs, and we validate the models we present using performance and power measurements of a parallel algorithm executing on a state-of-the-art low-power multicore processor.\",\"PeriodicalId\":112226,\"journal\":{\"name\":\"Power-Aware Computer Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Power-Aware Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818613.2818744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power-Aware Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818613.2818744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

半导体器件工程师很难将观察到的潜在CMOS替代品的器件级特性与计算性能联系起来。我们通过开发一个模型来解决这一挑战,该模型将器件属性与算法并行性、总计算工作量以及电压和频率缩放程度联系起来。然后,我们使用该模型来深入了解设备属性如何影响在硬件并发情况下执行并行算法的执行时间、平均功耗和总体能耗。该模型有助于研究权衡:它使研究人员能够制定考虑设备属性的联合能量延迟指标。我们使用来自十几个大型数字电路设计的数据来支持我们的分析,并且我们使用在最先进的低功耗多核处理器上执行的并行算法的性能和功耗测量来验证我们提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How device properties influence energy-delay metrics and the energy-efficiency of parallel computations
Semiconductor device engineers are hard-pressed to relate observed device-level properties of potential CMOS replacements to computation performance. We address this challenge by developing a model linking device properties to algorithm parallelism, total computational work, and degree of voltage and frequency scaling. We then use the model to provide insight into how device properties influence execution time, average power dissipation, and overall energy usage of parallel algorithms executing in the presence of hardware concurrency. The model facilitates studying tradeoffs: It lets researchers formulate joint energy-delay metrics that account for device properties. We support our analysis with data from a dozen large digital circuit designs, and we validate the models we present using performance and power measurements of a parallel algorithm executing on a state-of-the-art low-power multicore processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信