{"title":"自适应光学在三维宽视场显微镜中的应用","authors":"P. Kner, J. Sedat, D. Agard, Z. Kam","doi":"10.1117/12.773731","DOIUrl":null,"url":null,"abstract":"Depth aberrations are a major source of image degradation in three-dimensional microscopy, causing a significant loss of resolution and intensity deep into the sample. These aberrations occur because of an inevitable mismatch between the sample refractive index and the immersion medium index. We have built a wide-field fluorescence microscope that incorporates a large-throw deformable mirror to correct for depth aberrations in 3D imaging. We demonstrate a corrected point spread function imaging beads in water with an oil immersion lens and a twofold improvement in peak signal intensity. We apply this new microscope to imaging biological samples, and show sharper images and improved deconvolution.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Applying adaptive optics to three-dimensional wide-field microscopy\",\"authors\":\"P. Kner, J. Sedat, D. Agard, Z. Kam\",\"doi\":\"10.1117/12.773731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth aberrations are a major source of image degradation in three-dimensional microscopy, causing a significant loss of resolution and intensity deep into the sample. These aberrations occur because of an inevitable mismatch between the sample refractive index and the immersion medium index. We have built a wide-field fluorescence microscope that incorporates a large-throw deformable mirror to correct for depth aberrations in 3D imaging. We demonstrate a corrected point spread function imaging beads in water with an oil immersion lens and a twofold improvement in peak signal intensity. We apply this new microscope to imaging biological samples, and show sharper images and improved deconvolution.\",\"PeriodicalId\":130723,\"journal\":{\"name\":\"SPIE MOEMS-MEMS\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE MOEMS-MEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.773731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE MOEMS-MEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.773731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying adaptive optics to three-dimensional wide-field microscopy
Depth aberrations are a major source of image degradation in three-dimensional microscopy, causing a significant loss of resolution and intensity deep into the sample. These aberrations occur because of an inevitable mismatch between the sample refractive index and the immersion medium index. We have built a wide-field fluorescence microscope that incorporates a large-throw deformable mirror to correct for depth aberrations in 3D imaging. We demonstrate a corrected point spread function imaging beads in water with an oil immersion lens and a twofold improvement in peak signal intensity. We apply this new microscope to imaging biological samples, and show sharper images and improved deconvolution.