P. Barmuta, G. P. Gibiino, F. Ferranti, A. Lewandowski, D. Schreurs
{"title":"基于响应面方法的hemt非线性行为模型","authors":"P. Barmuta, G. P. Gibiino, F. Ferranti, A. Lewandowski, D. Schreurs","doi":"10.1109/NEMO.2014.6995706","DOIUrl":null,"url":null,"abstract":"In this paper, the response surface methodology is proposed to model nonlinear microwave devices using different sampling techniques. Each of the methods represents a distinct approach: exploration-oriented (Voronoi tessellation), nonlinearity-exploitation-oriented (LOcal Linear Approximation) and model-error-minimization-oriented. This allows to build accurate and compact global behavioral models of drain voltage at different harmonics of a 0.15 μm GaAs HEMT transistor with only few hundreds of samples. After choosing the best sampling technique, two types of global models are compared: Radial Basis Function and Kriging. It is shown that the modeling convergence depends on the model type, and better results are obtained using the Kriging model.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear behavioral models of HEMTs using response surface methodology\",\"authors\":\"P. Barmuta, G. P. Gibiino, F. Ferranti, A. Lewandowski, D. Schreurs\",\"doi\":\"10.1109/NEMO.2014.6995706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the response surface methodology is proposed to model nonlinear microwave devices using different sampling techniques. Each of the methods represents a distinct approach: exploration-oriented (Voronoi tessellation), nonlinearity-exploitation-oriented (LOcal Linear Approximation) and model-error-minimization-oriented. This allows to build accurate and compact global behavioral models of drain voltage at different harmonics of a 0.15 μm GaAs HEMT transistor with only few hundreds of samples. After choosing the best sampling technique, two types of global models are compared: Radial Basis Function and Kriging. It is shown that the modeling convergence depends on the model type, and better results are obtained using the Kriging model.\",\"PeriodicalId\":273349,\"journal\":{\"name\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO.2014.6995706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear behavioral models of HEMTs using response surface methodology
In this paper, the response surface methodology is proposed to model nonlinear microwave devices using different sampling techniques. Each of the methods represents a distinct approach: exploration-oriented (Voronoi tessellation), nonlinearity-exploitation-oriented (LOcal Linear Approximation) and model-error-minimization-oriented. This allows to build accurate and compact global behavioral models of drain voltage at different harmonics of a 0.15 μm GaAs HEMT transistor with only few hundreds of samples. After choosing the best sampling technique, two types of global models are compared: Radial Basis Function and Kriging. It is shown that the modeling convergence depends on the model type, and better results are obtained using the Kriging model.