J. Uribe, W. Wong, H. Baghaei, R. Farrel, H. Li, Y. Liu, Y. Wang, T. Xing
{"title":"一种高效的位置敏感闪烁探测器阵列探测器制作方法,探测器填充率为98%","authors":"J. Uribe, W. Wong, H. Baghaei, R. Farrel, H. Li, Y. Liu, Y. Wang, T. Xing","doi":"10.1109/NSSMIC.2002.1239524","DOIUrl":null,"url":null,"abstract":"Position-sensitive scintillation-detector arrays (PSSDA) are used in nuclear imaging such as PET. The PSSDA-production method determines the imaging resolution, sensitivity, labor/part cost, and reliability of the system. It is especially challenging and costly for ultra high-resolution systems that have large numbers of very small crystal-needles. A new slab-sandwich-slice (SSS) production method was developed. Instead of using individual crystal needles, the construction started with crystal slabs that are 15-crystal-needles wide and 1-needle thick. White-paint was deposited onto slab surfaces to form shaped optical windows. The painted slabs were grouped into two crystal-sandwich types. Each sandwich-type was a stack of 7 slabs painted with a distinctive set of optical windows, held together with optical glue. For a 40,000-crystal system, only 192 type-A and 144 type-B sandwiches are needed. Sandwiches were crosscut into another slab formation (\"slices\"). Each slice was again 1-needle thick; each slice is basically a stack of needles glued together, optically coupled by the glue and the painted windows. After a second set of white-paint optical-windows was applied on the slices' surface, 3 slices of type-B are grouped between 4 slices of type-A forming a 7/spl times/7 PSSDA. The SSS production method was applied in the construction of high-resolution 12-module prototype PET camera (HOTPET). The method reduces the more than 400,000 precision painting and gluing steps into 55,000 steps for a 40,000-BGO-crystal system, leading to lower labor cost. Detectors were fabricated with the method with good results. 2.66/spl times/2.66 mm/sup 2/ crystals are separated only by a 0.06-mm gap; this is a 98% linear detector packing fraction or 96% area packing fraction. Compared to 90% linear-packing (81% area) from conventional methods, the 20% higher crystal-packing density would translate into a 1.2-1.44 times higher coincidence-detection sensitivity in PET. The SSS method cut the crystal cost by half, and improved production yield by 94%. Crystal-positioning error was /spl sigma/=0.09mm.","PeriodicalId":385259,"journal":{"name":"2002 IEEE Nuclear Science Symposium Conference Record","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"An efficient detector production method for position-sensitive scintillation detector arrays with 98% detector packing fraction\",\"authors\":\"J. Uribe, W. Wong, H. Baghaei, R. Farrel, H. Li, Y. Liu, Y. Wang, T. Xing\",\"doi\":\"10.1109/NSSMIC.2002.1239524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Position-sensitive scintillation-detector arrays (PSSDA) are used in nuclear imaging such as PET. The PSSDA-production method determines the imaging resolution, sensitivity, labor/part cost, and reliability of the system. It is especially challenging and costly for ultra high-resolution systems that have large numbers of very small crystal-needles. A new slab-sandwich-slice (SSS) production method was developed. Instead of using individual crystal needles, the construction started with crystal slabs that are 15-crystal-needles wide and 1-needle thick. White-paint was deposited onto slab surfaces to form shaped optical windows. The painted slabs were grouped into two crystal-sandwich types. Each sandwich-type was a stack of 7 slabs painted with a distinctive set of optical windows, held together with optical glue. For a 40,000-crystal system, only 192 type-A and 144 type-B sandwiches are needed. Sandwiches were crosscut into another slab formation (\\\"slices\\\"). Each slice was again 1-needle thick; each slice is basically a stack of needles glued together, optically coupled by the glue and the painted windows. After a second set of white-paint optical-windows was applied on the slices' surface, 3 slices of type-B are grouped between 4 slices of type-A forming a 7/spl times/7 PSSDA. The SSS production method was applied in the construction of high-resolution 12-module prototype PET camera (HOTPET). The method reduces the more than 400,000 precision painting and gluing steps into 55,000 steps for a 40,000-BGO-crystal system, leading to lower labor cost. Detectors were fabricated with the method with good results. 2.66/spl times/2.66 mm/sup 2/ crystals are separated only by a 0.06-mm gap; this is a 98% linear detector packing fraction or 96% area packing fraction. Compared to 90% linear-packing (81% area) from conventional methods, the 20% higher crystal-packing density would translate into a 1.2-1.44 times higher coincidence-detection sensitivity in PET. The SSS method cut the crystal cost by half, and improved production yield by 94%. Crystal-positioning error was /spl sigma/=0.09mm.\",\"PeriodicalId\":385259,\"journal\":{\"name\":\"2002 IEEE Nuclear Science Symposium Conference Record\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE Nuclear Science Symposium Conference Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2002.1239524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Nuclear Science Symposium Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2002.1239524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient detector production method for position-sensitive scintillation detector arrays with 98% detector packing fraction
Position-sensitive scintillation-detector arrays (PSSDA) are used in nuclear imaging such as PET. The PSSDA-production method determines the imaging resolution, sensitivity, labor/part cost, and reliability of the system. It is especially challenging and costly for ultra high-resolution systems that have large numbers of very small crystal-needles. A new slab-sandwich-slice (SSS) production method was developed. Instead of using individual crystal needles, the construction started with crystal slabs that are 15-crystal-needles wide and 1-needle thick. White-paint was deposited onto slab surfaces to form shaped optical windows. The painted slabs were grouped into two crystal-sandwich types. Each sandwich-type was a stack of 7 slabs painted with a distinctive set of optical windows, held together with optical glue. For a 40,000-crystal system, only 192 type-A and 144 type-B sandwiches are needed. Sandwiches were crosscut into another slab formation ("slices"). Each slice was again 1-needle thick; each slice is basically a stack of needles glued together, optically coupled by the glue and the painted windows. After a second set of white-paint optical-windows was applied on the slices' surface, 3 slices of type-B are grouped between 4 slices of type-A forming a 7/spl times/7 PSSDA. The SSS production method was applied in the construction of high-resolution 12-module prototype PET camera (HOTPET). The method reduces the more than 400,000 precision painting and gluing steps into 55,000 steps for a 40,000-BGO-crystal system, leading to lower labor cost. Detectors were fabricated with the method with good results. 2.66/spl times/2.66 mm/sup 2/ crystals are separated only by a 0.06-mm gap; this is a 98% linear detector packing fraction or 96% area packing fraction. Compared to 90% linear-packing (81% area) from conventional methods, the 20% higher crystal-packing density would translate into a 1.2-1.44 times higher coincidence-detection sensitivity in PET. The SSS method cut the crystal cost by half, and improved production yield by 94%. Crystal-positioning error was /spl sigma/=0.09mm.