使用高维模型表示的彩色图像插值

Efsun Karaca, M. A. Tunga
{"title":"使用高维模型表示的彩色图像插值","authors":"Efsun Karaca, M. A. Tunga","doi":"10.1109/EUSIPCO.2016.7760684","DOIUrl":null,"url":null,"abstract":"Image inpainting is the process of filling missing or fixing corrupted regions in a given image. The intensity values of the pixels in missing area are expected to be associated with the pixels in the surrounding area. Interpolation-based methods that can solve the problem with a high accuracy may become inefficient when the dimension of the data increases. We solve this problem by representing images with lower dimensions using High Dimensional Model Representation method. We then perform Lagrange interpolation on the lower dimensional data to find the intensity values of the missing pixels. In order to use High Dimensional Model Representation method and to improve the accuracy of Lagrange interpolation, we also propose a procedure that decompose missing regions into smaller ones and perform inpainting hierarchically starting from the smallest region. Experimental results demonstrate that the proposed method produces better results than the variational and exemplar-based inpainting approaches in most of the test images.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interpolation-based image inpainting in color images using high dimensional model representation\",\"authors\":\"Efsun Karaca, M. A. Tunga\",\"doi\":\"10.1109/EUSIPCO.2016.7760684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image inpainting is the process of filling missing or fixing corrupted regions in a given image. The intensity values of the pixels in missing area are expected to be associated with the pixels in the surrounding area. Interpolation-based methods that can solve the problem with a high accuracy may become inefficient when the dimension of the data increases. We solve this problem by representing images with lower dimensions using High Dimensional Model Representation method. We then perform Lagrange interpolation on the lower dimensional data to find the intensity values of the missing pixels. In order to use High Dimensional Model Representation method and to improve the accuracy of Lagrange interpolation, we also propose a procedure that decompose missing regions into smaller ones and perform inpainting hierarchically starting from the smallest region. Experimental results demonstrate that the proposed method produces better results than the variational and exemplar-based inpainting approaches in most of the test images.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

图像补漆是在给定图像中填充缺失或修复损坏区域的过程。缺失区域中像素的强度值期望与周围区域中的像素相关联。基于插值的方法能够以较高的精度解决问题,但当数据维数增加时,这种方法可能会变得效率低下。我们使用高维模型表示方法来表示低维图像,从而解决了这个问题。然后,我们对低维数据执行拉格朗日插值,以找到缺失像素的强度值。为了使用高维模型表示方法,提高拉格朗日插值的精度,我们还提出了一种将缺失区域分解成更小的区域,并从最小区域开始分层次进行补图的方法。实验结果表明,在大多数测试图像中,该方法比变分方法和基于样本的方法取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolation-based image inpainting in color images using high dimensional model representation
Image inpainting is the process of filling missing or fixing corrupted regions in a given image. The intensity values of the pixels in missing area are expected to be associated with the pixels in the surrounding area. Interpolation-based methods that can solve the problem with a high accuracy may become inefficient when the dimension of the data increases. We solve this problem by representing images with lower dimensions using High Dimensional Model Representation method. We then perform Lagrange interpolation on the lower dimensional data to find the intensity values of the missing pixels. In order to use High Dimensional Model Representation method and to improve the accuracy of Lagrange interpolation, we also propose a procedure that decompose missing regions into smaller ones and perform inpainting hierarchically starting from the smallest region. Experimental results demonstrate that the proposed method produces better results than the variational and exemplar-based inpainting approaches in most of the test images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信