S. Kandasamy, K. Kalantar-zadeh, G. Rosengarten, W. Wlodarski
{"title":"薄膜热电微珀耳帖模块的建模","authors":"S. Kandasamy, K. Kalantar-zadeh, G. Rosengarten, W. Wlodarski","doi":"10.1109/TENCON.2004.1414931","DOIUrl":null,"url":null,"abstract":"A micro Peltier cooler/heater module has been modelled. The module consists of n-type bismuth telluride and p-type antimony telluride thermoelectric materials. The commercial software package CFD-ACE+ has been used to implement and analyse the model. A two-dimensional coupled electrical and thermal simulation was performed. This software includes the possibility to incorporate the Peltier effect. The temperature, electric field intensity and wall heat flux distributions were simulated for different applied potentials. The variation in temperature difference with respect to the Seebeck coefficient of the material was calculated and analysed.","PeriodicalId":434986,"journal":{"name":"2004 IEEE Region 10 Conference TENCON 2004.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modelling of a thin film thermoelectric micro Peltier module\",\"authors\":\"S. Kandasamy, K. Kalantar-zadeh, G. Rosengarten, W. Wlodarski\",\"doi\":\"10.1109/TENCON.2004.1414931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A micro Peltier cooler/heater module has been modelled. The module consists of n-type bismuth telluride and p-type antimony telluride thermoelectric materials. The commercial software package CFD-ACE+ has been used to implement and analyse the model. A two-dimensional coupled electrical and thermal simulation was performed. This software includes the possibility to incorporate the Peltier effect. The temperature, electric field intensity and wall heat flux distributions were simulated for different applied potentials. The variation in temperature difference with respect to the Seebeck coefficient of the material was calculated and analysed.\",\"PeriodicalId\":434986,\"journal\":{\"name\":\"2004 IEEE Region 10 Conference TENCON 2004.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE Region 10 Conference TENCON 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2004.1414931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE Region 10 Conference TENCON 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2004.1414931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling of a thin film thermoelectric micro Peltier module
A micro Peltier cooler/heater module has been modelled. The module consists of n-type bismuth telluride and p-type antimony telluride thermoelectric materials. The commercial software package CFD-ACE+ has been used to implement and analyse the model. A two-dimensional coupled electrical and thermal simulation was performed. This software includes the possibility to incorporate the Peltier effect. The temperature, electric field intensity and wall heat flux distributions were simulated for different applied potentials. The variation in temperature difference with respect to the Seebeck coefficient of the material was calculated and analysed.