基于小波- lda神经网络的感应电机绕组短路检测

D. A. Asfani, Syafaruddin, M. Purnomo, Takashi Hiyama
{"title":"基于小波- lda神经网络的感应电机绕组短路检测","authors":"D. A. Asfani, Syafaruddin, M. Purnomo, Takashi Hiyama","doi":"10.1109/DEMPED.2011.6063644","DOIUrl":null,"url":null,"abstract":"The paper proposes the short circuit identification method for induction motor winding. Four states of motor operation are defined as normal operation, starting of short circuit, steady state short circuit and ending of short circuit. The neural network based detection system is utilized to distinguish these defined operation states. Motor current is processed using discrete wavelet transformation to extract energy component of high frequency signal, which is latterly used for variable detection. Three different wavelet types varied by five levels of transformation are evaluated using linear discriminant analysis (LDA) in order to obtain the most appropriate wavelet filter for detection task. A laboratory experiment is performed to validate the accuracy of the proposed method.","PeriodicalId":379207,"journal":{"name":"8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wavelet-LDA-neural network based short circuit occurrence detection in induction motor winding\",\"authors\":\"D. A. Asfani, Syafaruddin, M. Purnomo, Takashi Hiyama\",\"doi\":\"10.1109/DEMPED.2011.6063644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes the short circuit identification method for induction motor winding. Four states of motor operation are defined as normal operation, starting of short circuit, steady state short circuit and ending of short circuit. The neural network based detection system is utilized to distinguish these defined operation states. Motor current is processed using discrete wavelet transformation to extract energy component of high frequency signal, which is latterly used for variable detection. Three different wavelet types varied by five levels of transformation are evaluated using linear discriminant analysis (LDA) in order to obtain the most appropriate wavelet filter for detection task. A laboratory experiment is performed to validate the accuracy of the proposed method.\",\"PeriodicalId\":379207,\"journal\":{\"name\":\"8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2011.6063644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2011.6063644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了感应电动机绕组短路识别方法。电机运行分为正常运行、短路启动、稳态短路和短路结束四种状态。利用基于神经网络的检测系统来区分这些已定义的运行状态。采用离散小波变换对电机电流进行处理,提取高频信号的能量分量,并将其用于变量检测。利用线性判别分析(LDA)对变换层次不同的三种不同的小波类型进行了评价,以获得最适合检测任务的小波滤波器。通过室内实验验证了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-LDA-neural network based short circuit occurrence detection in induction motor winding
The paper proposes the short circuit identification method for induction motor winding. Four states of motor operation are defined as normal operation, starting of short circuit, steady state short circuit and ending of short circuit. The neural network based detection system is utilized to distinguish these defined operation states. Motor current is processed using discrete wavelet transformation to extract energy component of high frequency signal, which is latterly used for variable detection. Three different wavelet types varied by five levels of transformation are evaluated using linear discriminant analysis (LDA) in order to obtain the most appropriate wavelet filter for detection task. A laboratory experiment is performed to validate the accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信