WISS,用于移动机器人的扬声器识别系统

François Grondin, F. Michaud
{"title":"WISS,用于移动机器人的扬声器识别系统","authors":"François Grondin, F. Michaud","doi":"10.1109/ICRA.2012.6224729","DOIUrl":null,"url":null,"abstract":"This paper presents WISS, a speaker identification system for mobile robots integrated to ManyEars, a sound source localization, tracking and separation system. Speaker identification consists in recognizing an individual among a group of known speakers. For mobile robots, performing speaker identification in presence of noise that changes over time is one important challenge. To deal with this issue, WISS uses Parallel Model Combination (PMC) and masks to update in real-time the speaker models (obtained in clean conditions) to both additive and convolutive noises. The results show that the weighted rate of good speaker identifications is 96% on average for a Signal-to-Noise Ratio (SNR) of 16 dB, whereas it only decreases to 84% when the SNR drops to 2 dB.","PeriodicalId":246173,"journal":{"name":"2012 IEEE International Conference on Robotics and Automation","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"WISS, a speaker identification system for mobile robots\",\"authors\":\"François Grondin, F. Michaud\",\"doi\":\"10.1109/ICRA.2012.6224729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents WISS, a speaker identification system for mobile robots integrated to ManyEars, a sound source localization, tracking and separation system. Speaker identification consists in recognizing an individual among a group of known speakers. For mobile robots, performing speaker identification in presence of noise that changes over time is one important challenge. To deal with this issue, WISS uses Parallel Model Combination (PMC) and masks to update in real-time the speaker models (obtained in clean conditions) to both additive and convolutive noises. The results show that the weighted rate of good speaker identifications is 96% on average for a Signal-to-Noise Ratio (SNR) of 16 dB, whereas it only decreases to 84% when the SNR drops to 2 dB.\",\"PeriodicalId\":246173,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Automation\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2012.6224729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2012.6224729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了与ManyEars集成的移动机器人说话人识别系统WISS,该系统是一种声源定位、跟踪和分离系统。说话人识别包括在一群已知的说话人中识别一个人。对于移动机器人来说,在存在随时间变化的噪声的情况下进行说话人识别是一个重要的挑战。为了解决这个问题,WISS使用并行模型组合(PMC)和掩模来实时更新扬声器模型(在清洁条件下获得)到加性和卷积噪声。结果表明,当信噪比(SNR)为16 dB时,良好的说话人识别加权率平均为96%,而当信噪比降至2 dB时,加权率仅降至84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WISS, a speaker identification system for mobile robots
This paper presents WISS, a speaker identification system for mobile robots integrated to ManyEars, a sound source localization, tracking and separation system. Speaker identification consists in recognizing an individual among a group of known speakers. For mobile robots, performing speaker identification in presence of noise that changes over time is one important challenge. To deal with this issue, WISS uses Parallel Model Combination (PMC) and masks to update in real-time the speaker models (obtained in clean conditions) to both additive and convolutive noises. The results show that the weighted rate of good speaker identifications is 96% on average for a Signal-to-Noise Ratio (SNR) of 16 dB, whereas it only decreases to 84% when the SNR drops to 2 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信