基于改进细菌觅食算法的固定头水热调度

I. Farhat, M. El-Hawary
{"title":"基于改进细菌觅食算法的固定头水热调度","authors":"I. Farhat, M. El-Hawary","doi":"10.1109/EPEC.2010.5697200","DOIUrl":null,"url":null,"abstract":"In this paper the short-term hydro-thermal scheduling problem is solved using a modified bacterial foraging algorithm (MBFA). The integrated hydro-thermal systems considered include fixed-head hydro reservoirs. The short-term hydro-thermal scheduling (STHTS) problem is a dynamic large-scale nonlinear optimization problem which requires solving unit commitment and economic power load dispatch problems. The bacterial foraging algorithm (BFA) is a recently developed evolutionary optimization technique based on the foraging behavior of the E. coli bacteria. The BFA has been successfully employed to solve various optimization problems; however, for large-scale problems such as this problem, it shows poor convergence properties. To overcome this problem considering its high-dimension search space, critical modifications are introduced to the basic BFA. The algorithm presented is validated using two fixed-head test systems. Results show that the proposed algorithm is capable of solving the problem with good performance.","PeriodicalId":393869,"journal":{"name":"2010 IEEE Electrical Power & Energy Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Fixed-head hydro-thermal scheduling using a modified bacterial foraging algorithm\",\"authors\":\"I. Farhat, M. El-Hawary\",\"doi\":\"10.1109/EPEC.2010.5697200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the short-term hydro-thermal scheduling problem is solved using a modified bacterial foraging algorithm (MBFA). The integrated hydro-thermal systems considered include fixed-head hydro reservoirs. The short-term hydro-thermal scheduling (STHTS) problem is a dynamic large-scale nonlinear optimization problem which requires solving unit commitment and economic power load dispatch problems. The bacterial foraging algorithm (BFA) is a recently developed evolutionary optimization technique based on the foraging behavior of the E. coli bacteria. The BFA has been successfully employed to solve various optimization problems; however, for large-scale problems such as this problem, it shows poor convergence properties. To overcome this problem considering its high-dimension search space, critical modifications are introduced to the basic BFA. The algorithm presented is validated using two fixed-head test systems. Results show that the proposed algorithm is capable of solving the problem with good performance.\",\"PeriodicalId\":393869,\"journal\":{\"name\":\"2010 IEEE Electrical Power & Energy Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electrical Power & Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2010.5697200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Power & Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2010.5697200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文采用一种改进的细菌觅食算法(MBFA)解决了短期水热调度问题。所考虑的综合热水系统包括固定水头水库。短期水热调度问题是一个动态的大规模非线性优化问题,需要解决机组投入和电力负荷经济调度问题。细菌觅食算法是近年来发展起来的一种基于大肠杆菌觅食行为的进化优化技术。BFA已成功地用于求解各种优化问题;然而,对于像这个问题这样的大规模问题,它表现出较差的收敛性。为了克服这个问题,考虑到其高维搜索空间,对基本的BFA进行了关键的修改。通过两个固定头测试系统对算法进行了验证。结果表明,该算法能够以较好的性能解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-head hydro-thermal scheduling using a modified bacterial foraging algorithm
In this paper the short-term hydro-thermal scheduling problem is solved using a modified bacterial foraging algorithm (MBFA). The integrated hydro-thermal systems considered include fixed-head hydro reservoirs. The short-term hydro-thermal scheduling (STHTS) problem is a dynamic large-scale nonlinear optimization problem which requires solving unit commitment and economic power load dispatch problems. The bacterial foraging algorithm (BFA) is a recently developed evolutionary optimization technique based on the foraging behavior of the E. coli bacteria. The BFA has been successfully employed to solve various optimization problems; however, for large-scale problems such as this problem, it shows poor convergence properties. To overcome this problem considering its high-dimension search space, critical modifications are introduced to the basic BFA. The algorithm presented is validated using two fixed-head test systems. Results show that the proposed algorithm is capable of solving the problem with good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信