具有保证稳定性的高维参数化宏观建模

A. Zanco, S. Grivet-Talocia
{"title":"具有保证稳定性的高维参数化宏观建模","authors":"A. Zanco, S. Grivet-Talocia","doi":"10.1109/EPEPS47316.2019.193203","DOIUrl":null,"url":null,"abstract":"We introduce a Radial Basis Function (RBF) parameterized macromodeling algorithm, specifically designed for high-dimensional parameters. As opposed to standard approaches, the adopted RBF model representation has the potential to scale very favorably when the number of model parameters increases, since the number of model coefficients is not related to the dimension of the embedding parameter space. A transmission-line example with up to seven parameters is used to demonstrate the proposed approach.","PeriodicalId":304228,"journal":{"name":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"High-Dimensional Parameterized Macromodeling with Guaranteed Stability\",\"authors\":\"A. Zanco, S. Grivet-Talocia\",\"doi\":\"10.1109/EPEPS47316.2019.193203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Radial Basis Function (RBF) parameterized macromodeling algorithm, specifically designed for high-dimensional parameters. As opposed to standard approaches, the adopted RBF model representation has the potential to scale very favorably when the number of model parameters increases, since the number of model coefficients is not related to the dimension of the embedding parameter space. A transmission-line example with up to seven parameters is used to demonstrate the proposed approach.\",\"PeriodicalId\":304228,\"journal\":{\"name\":\"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS47316.2019.193203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS47316.2019.193203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们介绍了一种径向基函数(RBF)参数化宏建模算法,专门针对高维参数设计。与标准方法相反,当模型参数数量增加时,所采用的RBF模型表示具有非常有利的缩放潜力,因为模型系数的数量与嵌入参数空间的维数无关。用一个多达7个参数的在线输电实例来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Dimensional Parameterized Macromodeling with Guaranteed Stability
We introduce a Radial Basis Function (RBF) parameterized macromodeling algorithm, specifically designed for high-dimensional parameters. As opposed to standard approaches, the adopted RBF model representation has the potential to scale very favorably when the number of model parameters increases, since the number of model coefficients is not related to the dimension of the embedding parameter space. A transmission-line example with up to seven parameters is used to demonstrate the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信