一种有效的保护隐私的最大频繁项集挖掘算法

YuQing Miao, Xiaohua Zhang, Kongling Wu, Jie Su
{"title":"一种有效的保护隐私的最大频繁项集挖掘算法","authors":"YuQing Miao, Xiaohua Zhang, Kongling Wu, Jie Su","doi":"10.1109/PAAP.2011.62","DOIUrl":null,"url":null,"abstract":"This paper addressed the insecurity and the inefficiency of privacy preserving association rule mining in vertically partitioned data. We presented a privacy preserving maximal frequent itemsets mining algorithm in vertically partitioned data. The algorithm adopted a more secure vector dot protocol which used an inverse matrix to hide the original input vector, and without any site revealing privacy vector. The mining strategy was based on depth-first search for the maximal frequent itemsets. Performance analysis and experimental analysis showed that the algorithm possessed higher security and efficiency.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Efficient Algorithm for Privacy Preserving Maximal Frequent Itemsets Mining\",\"authors\":\"YuQing Miao, Xiaohua Zhang, Kongling Wu, Jie Su\",\"doi\":\"10.1109/PAAP.2011.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addressed the insecurity and the inefficiency of privacy preserving association rule mining in vertically partitioned data. We presented a privacy preserving maximal frequent itemsets mining algorithm in vertically partitioned data. The algorithm adopted a more secure vector dot protocol which used an inverse matrix to hide the original input vector, and without any site revealing privacy vector. The mining strategy was based on depth-first search for the maximal frequent itemsets. Performance analysis and experimental analysis showed that the algorithm possessed higher security and efficiency.\",\"PeriodicalId\":213010,\"journal\":{\"name\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP.2011.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文解决了在垂直分区数据中保护隐私的关联规则挖掘的不安全性和低效率问题。提出了一种保护隐私的垂直分割数据最大频繁项集挖掘算法。该算法采用了一种更安全的向量点协议,利用逆矩阵隐藏原始输入向量,且不存在任何泄露隐私向量的站点。挖掘策略基于深度优先搜索最大频繁项集。性能分析和实验分析表明,该算法具有较高的安全性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Algorithm for Privacy Preserving Maximal Frequent Itemsets Mining
This paper addressed the insecurity and the inefficiency of privacy preserving association rule mining in vertically partitioned data. We presented a privacy preserving maximal frequent itemsets mining algorithm in vertically partitioned data. The algorithm adopted a more secure vector dot protocol which used an inverse matrix to hide the original input vector, and without any site revealing privacy vector. The mining strategy was based on depth-first search for the maximal frequent itemsets. Performance analysis and experimental analysis showed that the algorithm possessed higher security and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信