{"title":"一种有效的保护隐私的最大频繁项集挖掘算法","authors":"YuQing Miao, Xiaohua Zhang, Kongling Wu, Jie Su","doi":"10.1109/PAAP.2011.62","DOIUrl":null,"url":null,"abstract":"This paper addressed the insecurity and the inefficiency of privacy preserving association rule mining in vertically partitioned data. We presented a privacy preserving maximal frequent itemsets mining algorithm in vertically partitioned data. The algorithm adopted a more secure vector dot protocol which used an inverse matrix to hide the original input vector, and without any site revealing privacy vector. The mining strategy was based on depth-first search for the maximal frequent itemsets. Performance analysis and experimental analysis showed that the algorithm possessed higher security and efficiency.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Efficient Algorithm for Privacy Preserving Maximal Frequent Itemsets Mining\",\"authors\":\"YuQing Miao, Xiaohua Zhang, Kongling Wu, Jie Su\",\"doi\":\"10.1109/PAAP.2011.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addressed the insecurity and the inefficiency of privacy preserving association rule mining in vertically partitioned data. We presented a privacy preserving maximal frequent itemsets mining algorithm in vertically partitioned data. The algorithm adopted a more secure vector dot protocol which used an inverse matrix to hide the original input vector, and without any site revealing privacy vector. The mining strategy was based on depth-first search for the maximal frequent itemsets. Performance analysis and experimental analysis showed that the algorithm possessed higher security and efficiency.\",\"PeriodicalId\":213010,\"journal\":{\"name\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP.2011.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Algorithm for Privacy Preserving Maximal Frequent Itemsets Mining
This paper addressed the insecurity and the inefficiency of privacy preserving association rule mining in vertically partitioned data. We presented a privacy preserving maximal frequent itemsets mining algorithm in vertically partitioned data. The algorithm adopted a more secure vector dot protocol which used an inverse matrix to hide the original input vector, and without any site revealing privacy vector. The mining strategy was based on depth-first search for the maximal frequent itemsets. Performance analysis and experimental analysis showed that the algorithm possessed higher security and efficiency.