基于补丁的纹理合成快速鲁棒参数估计方法

Jakrapong Narkdej, P. Kanongchaiyos
{"title":"基于补丁的纹理合成快速鲁棒参数估计方法","authors":"Jakrapong Narkdej, P. Kanongchaiyos","doi":"10.1145/1477862.1477909","DOIUrl":null,"url":null,"abstract":"Patch-based texture synthesis method uses MRF texture model to synthesize a bigger texture from a smaller patch sample containing two user-defined parameters, patch size and boundary zone. To obtain optimal values for the parameters, the texture has to be analyzed, which costs too expensive for real-time large texture synthesis. This paper introduces a more efficient method for finding the optimal value of the two parameters. Firstly, we use graph-based image segmentation to extract feature segments from the input sample. We then choose a set of major segments preserving the main features to appear in the final result. Finally, we calculate the two parameters based on size and repetition of the segments. The experimental results how that our technique can reduce computational time for determining the parameters compared to previous method and can work with several type of textures.","PeriodicalId":182702,"journal":{"name":"Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast and robust parameter estimation method for patch-based texture synthesis\",\"authors\":\"Jakrapong Narkdej, P. Kanongchaiyos\",\"doi\":\"10.1145/1477862.1477909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patch-based texture synthesis method uses MRF texture model to synthesize a bigger texture from a smaller patch sample containing two user-defined parameters, patch size and boundary zone. To obtain optimal values for the parameters, the texture has to be analyzed, which costs too expensive for real-time large texture synthesis. This paper introduces a more efficient method for finding the optimal value of the two parameters. Firstly, we use graph-based image segmentation to extract feature segments from the input sample. We then choose a set of major segments preserving the main features to appear in the final result. Finally, we calculate the two parameters based on size and repetition of the segments. The experimental results how that our technique can reduce computational time for determining the parameters compared to previous method and can work with several type of textures.\",\"PeriodicalId\":182702,\"journal\":{\"name\":\"Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1477862.1477909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1477862.1477909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于patch的纹理合成方法采用MRF纹理模型,通过包含两个自定义参数patch大小和边界区域,从较小的patch样本中合成较大的纹理。为了获得参数的最优值,必须对纹理进行分析,这对于实时大规模纹理合成来说成本太高。本文介绍了一种更有效的求这两个参数最优值的方法。首先,我们使用基于图的图像分割从输入样本中提取特征段。然后,我们选择一组保留主要特征的主要片段,以出现在最终结果中。最后,我们根据片段的大小和重复次数来计算这两个参数。实验结果表明,与之前的方法相比,我们的方法可以减少参数确定的计算时间,并且可以处理多种类型的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and robust parameter estimation method for patch-based texture synthesis
Patch-based texture synthesis method uses MRF texture model to synthesize a bigger texture from a smaller patch sample containing two user-defined parameters, patch size and boundary zone. To obtain optimal values for the parameters, the texture has to be analyzed, which costs too expensive for real-time large texture synthesis. This paper introduces a more efficient method for finding the optimal value of the two parameters. Firstly, we use graph-based image segmentation to extract feature segments from the input sample. We then choose a set of major segments preserving the main features to appear in the final result. Finally, we calculate the two parameters based on size and repetition of the segments. The experimental results how that our technique can reduce computational time for determining the parameters compared to previous method and can work with several type of textures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信