随机自动机在多模态性能准则参数自优化中的应用

I. Shapiro, K. Narendra
{"title":"随机自动机在多模态性能准则参数自优化中的应用","authors":"I. Shapiro, K. Narendra","doi":"10.1109/TSSC.1969.300228","DOIUrl":null,"url":null,"abstract":"The application of stochastic automata to adaptive parameter optimization problems is considered. The fundamental problem is that of relating the concepts of automata theory and mathematical psychology learning theory to the usual notion of a performance index in a control system. Consideration is given to a number of possible automata structures, linear and nonlinear. One particular linear model is derived with optimal rather than expedient properties of convergence. A basic feature of this model is that it is based on a system response set of rewards and inactions, the latter being substituted for the more common penalty responses. This choice of response set is directly related to the achievement of the desired behavior. Simulations are described for the maximization of multimodal performance functions intentionally constructed to demonstrate the use of the method in situations where relative extrema occur. An example is also given of the automaton as a direct adaptive controller for a third order control system.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1969-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Use of Stochastic Automata for Parameter Self-Optimization with Multimodal Performance Criteria\",\"authors\":\"I. Shapiro, K. Narendra\",\"doi\":\"10.1109/TSSC.1969.300228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of stochastic automata to adaptive parameter optimization problems is considered. The fundamental problem is that of relating the concepts of automata theory and mathematical psychology learning theory to the usual notion of a performance index in a control system. Consideration is given to a number of possible automata structures, linear and nonlinear. One particular linear model is derived with optimal rather than expedient properties of convergence. A basic feature of this model is that it is based on a system response set of rewards and inactions, the latter being substituted for the more common penalty responses. This choice of response set is directly related to the achievement of the desired behavior. Simulations are described for the maximization of multimodal performance functions intentionally constructed to demonstrate the use of the method in situations where relative extrema occur. An example is also given of the automaton as a direct adaptive controller for a third order control system.\",\"PeriodicalId\":120916,\"journal\":{\"name\":\"IEEE Trans. Syst. Sci. Cybern.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1969-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Syst. Sci. Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSSC.1969.300228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1969.300228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

研究了随机自动机在自适应参数优化问题中的应用。基本问题是将自动机理论和数学心理学学习理论的概念与控制系统中性能指标的通常概念联系起来。考虑到一些可能的自动机结构,线性和非线性。一个特殊的线性模型是推导出最优而不是权宜的收敛性质。该模型的一个基本特征是,它基于奖励和不作为的系统反应集,后者取代了更常见的惩罚反应。这种反应集的选择直接关系到期望行为的实现。仿真描述了多模态性能函数的最大化,旨在演示该方法在发生相对极值的情况下的使用。最后给出了该自动机作为三阶控制系统的直接自适应控制器的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Stochastic Automata for Parameter Self-Optimization with Multimodal Performance Criteria
The application of stochastic automata to adaptive parameter optimization problems is considered. The fundamental problem is that of relating the concepts of automata theory and mathematical psychology learning theory to the usual notion of a performance index in a control system. Consideration is given to a number of possible automata structures, linear and nonlinear. One particular linear model is derived with optimal rather than expedient properties of convergence. A basic feature of this model is that it is based on a system response set of rewards and inactions, the latter being substituted for the more common penalty responses. This choice of response set is directly related to the achievement of the desired behavior. Simulations are described for the maximization of multimodal performance functions intentionally constructed to demonstrate the use of the method in situations where relative extrema occur. An example is also given of the automaton as a direct adaptive controller for a third order control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信